Files
dify-mirror/api/enterprise/telemetry/entities/__init__.py
GareArc 1b3a21e6f8 feat(telemetry): unify token metric label structure with Pydantic enforcement
- Add TokenMetricLabels BaseModel to enforce consistent label structure
- All dify.token.* metrics now use identical 6-label structure:
  * tenant_id, app_id, operation_type, model_provider, model_name, node_type
- Pydantic validation ensures runtime enforcement (extra='forbid', frozen=True)
- Enables filtering by operation_type to avoid double-counting:
  * workflow: aggregated workflow-level tokens
  * node_execution: individual node-level tokens
  * message: direct message tokens
  * rule_generate/code_generate: prompt generation tokens

Previously, inconsistent label cardinality made aggregation impossible:
- WORKFLOW: 3 labels
- NODE_EXECUTION: 6 labels
- MESSAGE: 5 labels
- PROMPT_GENERATION: 5 labels

Now all use the same 6-label structure for consistent querying.
2026-02-06 03:10:20 -08:00

122 lines
4.0 KiB
Python

from enum import StrEnum
from typing import cast
from opentelemetry.util.types import AttributeValue
from pydantic import BaseModel, ConfigDict
class EnterpriseTelemetrySpan(StrEnum):
WORKFLOW_RUN = "dify.workflow.run"
NODE_EXECUTION = "dify.node.execution"
DRAFT_NODE_EXECUTION = "dify.node.execution.draft"
class EnterpriseTelemetryEvent(StrEnum):
"""Event names for enterprise telemetry logs."""
APP_CREATED = "dify.app.created"
APP_UPDATED = "dify.app.updated"
APP_DELETED = "dify.app.deleted"
FEEDBACK_CREATED = "dify.feedback.created"
WORKFLOW_RUN = "dify.workflow.run"
MESSAGE_RUN = "dify.message.run"
TOOL_EXECUTION = "dify.tool.execution"
MODERATION_CHECK = "dify.moderation.check"
SUGGESTED_QUESTION_GENERATION = "dify.suggested_question.generation"
DATASET_RETRIEVAL = "dify.dataset.retrieval"
GENERATE_NAME_EXECUTION = "dify.generate_name.execution"
PROMPT_GENERATION_EXECUTION = "dify.prompt_generation.execution"
REHYDRATION_FAILED = "dify.telemetry.rehydration_failed"
class EnterpriseTelemetryCounter(StrEnum):
TOKENS = "tokens"
INPUT_TOKENS = "input_tokens"
OUTPUT_TOKENS = "output_tokens"
REQUESTS = "requests"
ERRORS = "errors"
FEEDBACK = "feedback"
DATASET_RETRIEVALS = "dataset_retrievals"
APP_CREATED = "app_created"
APP_UPDATED = "app_updated"
APP_DELETED = "app_deleted"
class EnterpriseTelemetryHistogram(StrEnum):
WORKFLOW_DURATION = "workflow_duration"
NODE_DURATION = "node_duration"
MESSAGE_DURATION = "message_duration"
MESSAGE_TTFT = "message_ttft"
TOOL_DURATION = "tool_duration"
PROMPT_GENERATION_DURATION = "prompt_generation_duration"
class TokenMetricLabels(BaseModel):
"""Unified label structure for all dify.token.* metrics.
All token counters (dify.tokens.input, dify.tokens.output, dify.tokens.total) MUST
use this exact label set to ensure consistent filtering and aggregation across
different operation types.
Attributes:
tenant_id: Tenant identifier.
app_id: Application identifier.
operation_type: Source of token usage (workflow | node_execution | message |
rule_generate | code_generate | structured_output | instruction_modify).
model_provider: LLM provider name. Empty string if not applicable (e.g., workflow-level).
model_name: LLM model name. Empty string if not applicable (e.g., workflow-level).
node_type: Workflow node type. Empty string unless operation_type=node_execution.
Usage:
labels = TokenMetricLabels(
tenant_id="tenant-123",
app_id="app-456",
operation_type=OperationType.WORKFLOW,
model_provider="",
model_name="",
node_type="",
)
exporter.increment_counter(
EnterpriseTelemetryCounter.INPUT_TOKENS,
100,
labels.to_dict()
)
Design rationale:
Without this unified structure, tokens get double-counted when querying totals
because workflow.total_tokens is already the sum of all node tokens. The
operation_type label allows filtering to separate workflow-level aggregates from
node-level detail, while keeping the same label cardinality for consistent queries.
"""
tenant_id: str
app_id: str
operation_type: str
model_provider: str
model_name: str
node_type: str
model_config = ConfigDict(extra="forbid", frozen=True)
def to_dict(self) -> dict[str, AttributeValue]:
return cast(
dict[str, AttributeValue],
{
"tenant_id": self.tenant_id,
"app_id": self.app_id,
"operation_type": self.operation_type,
"model_provider": self.model_provider,
"model_name": self.model_name,
"node_type": self.node_type,
},
)
__all__ = [
"EnterpriseTelemetryCounter",
"EnterpriseTelemetryEvent",
"EnterpriseTelemetryHistogram",
"EnterpriseTelemetrySpan",
"TokenMetricLabels",
]