Files
dify-mirror/api/tasks/batch_create_segment_to_index_task.py
wangxiaolei aa800d838d refactor: partition Celery task sessions into smaller, discrete execu… (#32085)
Co-authored-by: autofix-ci[bot] <114827586+autofix-ci[bot]@users.noreply.github.com>
2026-02-08 21:01:54 +08:00

189 lines
6.8 KiB
Python

import logging
import tempfile
import time
import uuid
from pathlib import Path
import click
import pandas as pd
from celery import shared_task
from sqlalchemy import func
from core.db.session_factory import session_factory
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from extensions.ext_redis import redis_client
from extensions.ext_storage import storage
from libs import helper
from libs.datetime_utils import naive_utc_now
from models.dataset import Dataset, Document, DocumentSegment
from models.model import UploadFile
from services.vector_service import VectorService
logger = logging.getLogger(__name__)
@shared_task(queue="dataset")
def batch_create_segment_to_index_task(
job_id: str,
upload_file_id: str,
dataset_id: str,
document_id: str,
tenant_id: str,
user_id: str,
):
"""
Async batch create segment to index
:param job_id:
:param upload_file_id:
:param dataset_id:
:param document_id:
:param tenant_id:
:param user_id:
Usage: batch_create_segment_to_index_task.delay(job_id, upload_file_id, dataset_id, document_id, tenant_id, user_id)
"""
logger.info(click.style(f"Start batch create segment jobId: {job_id}", fg="green"))
start_at = time.perf_counter()
indexing_cache_key = f"segment_batch_import_{job_id}"
# Initialize variables with default values
upload_file_key: str | None = None
dataset_config: dict | None = None
document_config: dict | None = None
with session_factory.create_session() as session:
try:
dataset = session.get(Dataset, dataset_id)
if not dataset:
raise ValueError("Dataset not exist.")
dataset_document = session.get(Document, document_id)
if not dataset_document:
raise ValueError("Document not exist.")
if (
not dataset_document.enabled
or dataset_document.archived
or dataset_document.indexing_status != "completed"
):
raise ValueError("Document is not available.")
upload_file = session.get(UploadFile, upload_file_id)
if not upload_file:
raise ValueError("UploadFile not found.")
dataset_config = {
"id": dataset.id,
"indexing_technique": dataset.indexing_technique,
"tenant_id": dataset.tenant_id,
"embedding_model_provider": dataset.embedding_model_provider,
"embedding_model": dataset.embedding_model,
}
document_config = {
"id": dataset_document.id,
"doc_form": dataset_document.doc_form,
"word_count": dataset_document.word_count or 0,
}
upload_file_key = upload_file.key
except Exception:
logger.exception("Segments batch created index failed")
redis_client.setex(indexing_cache_key, 600, "error")
return
# Ensure required variables are set before proceeding
if upload_file_key is None or dataset_config is None or document_config is None:
logger.error("Required configuration not set due to session error")
redis_client.setex(indexing_cache_key, 600, "error")
return
with tempfile.TemporaryDirectory() as temp_dir:
suffix = Path(upload_file_key).suffix
file_path = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}" # type: ignore
storage.download(upload_file_key, file_path)
df = pd.read_csv(file_path)
content = []
for _, row in df.iterrows():
if document_config["doc_form"] == "qa_model":
data = {"content": row.iloc[0], "answer": row.iloc[1]}
else:
data = {"content": row.iloc[0]}
content.append(data)
if len(content) == 0:
raise ValueError("The CSV file is empty.")
document_segments = []
embedding_model = None
if dataset_config["indexing_technique"] == "high_quality":
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=dataset_config["tenant_id"],
provider=dataset_config["embedding_model_provider"],
model_type=ModelType.TEXT_EMBEDDING,
model=dataset_config["embedding_model"],
)
word_count_change = 0
if embedding_model:
tokens_list = embedding_model.get_text_embedding_num_tokens(texts=[segment["content"] for segment in content])
else:
tokens_list = [0] * len(content)
with session_factory.create_session() as session, session.begin():
for segment, tokens in zip(content, tokens_list):
content = segment["content"]
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
max_position = (
session.query(func.max(DocumentSegment.position))
.where(DocumentSegment.document_id == document_config["id"])
.scalar()
)
segment_document = DocumentSegment(
tenant_id=tenant_id,
dataset_id=dataset_id,
document_id=document_id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
created_by=user_id,
indexing_at=naive_utc_now(),
status="completed",
completed_at=naive_utc_now(),
)
if document_config["doc_form"] == "qa_model":
segment_document.answer = segment["answer"]
segment_document.word_count += len(segment["answer"])
word_count_change += segment_document.word_count
session.add(segment_document)
document_segments.append(segment_document)
with session_factory.create_session() as session, session.begin():
dataset_document = session.get(Document, document_id)
if dataset_document:
assert dataset_document.word_count is not None
dataset_document.word_count += word_count_change
session.add(dataset_document)
with session_factory.create_session() as session:
dataset = session.get(Dataset, dataset_id)
if dataset:
VectorService.create_segments_vector(None, document_segments, dataset, document_config["doc_form"])
redis_client.setex(indexing_cache_key, 600, "completed")
end_at = time.perf_counter()
logger.info(
click.style(
f"Segment batch created job: {job_id} latency: {end_at - start_at}",
fg="green",
)
)