Merge remote-tracking branch 'origin/feat/support-agent-sandbox' into pre-align-hitl-frontend

This commit is contained in:
yyh
2026-02-09 11:36:01 +08:00
7 changed files with 380 additions and 42 deletions

View File

@@ -3,8 +3,8 @@ from __future__ import annotations
import base64
import json
import logging
from collections.abc import Generator
from typing import Any
from collections.abc import Generator, Mapping
from typing import Any, cast
from core.mcp.auth_client import MCPClientWithAuthRetry
from core.mcp.error import MCPConnectionError
@@ -17,6 +17,7 @@ from core.mcp.types import (
TextContent,
TextResourceContents,
)
from core.model_runtime.entities.llm_entities import LLMUsage, LLMUsageMetadata
from core.tools.__base.tool import Tool
from core.tools.__base.tool_runtime import ToolRuntime
from core.tools.entities.tool_entities import ToolEntity, ToolInvokeMessage, ToolProviderType
@@ -46,6 +47,7 @@ class MCPTool(Tool):
self.headers = headers or {}
self.timeout = timeout
self.sse_read_timeout = sse_read_timeout
self._latest_usage = LLMUsage.empty_usage()
def tool_provider_type(self) -> ToolProviderType:
return ToolProviderType.MCP
@@ -59,6 +61,10 @@ class MCPTool(Tool):
message_id: str | None = None,
) -> Generator[ToolInvokeMessage, None, None]:
result = self.invoke_remote_mcp_tool(tool_parameters)
# Extract usage metadata from MCP protocol's _meta field
self._latest_usage = self._derive_usage_from_result(result)
# handle dify tool output
for content in result.content:
if isinstance(content, TextContent):
@@ -120,6 +126,99 @@ class MCPTool(Tool):
for item in json_list:
yield self.create_json_message(item)
@property
def latest_usage(self) -> LLMUsage:
return self._latest_usage
@classmethod
def _derive_usage_from_result(cls, result: CallToolResult) -> LLMUsage:
"""
Extract usage metadata from MCP tool result's _meta field.
The MCP protocol's _meta field (aliased as 'meta' in Python) can contain
usage information such as token counts, costs, and other metadata.
Args:
result: The CallToolResult from MCP tool invocation
Returns:
LLMUsage instance with values from meta or empty_usage if not found
"""
# Extract usage from the meta field if present
if result.meta:
usage_dict = cls._extract_usage_dict(result.meta)
if usage_dict is not None:
return LLMUsage.from_metadata(cast(LLMUsageMetadata, cast(object, dict(usage_dict))))
return LLMUsage.empty_usage()
@classmethod
def _extract_usage_dict(cls, payload: Mapping[str, Any]) -> Mapping[str, Any] | None:
"""
Recursively search for usage dictionary in the payload.
The MCP protocol's _meta field can contain usage data in various formats:
- Direct usage field: {"usage": {...}}
- Nested in metadata: {"metadata": {"usage": {...}}}
- Or nested within other fields
Args:
payload: The payload to search for usage data
Returns:
The usage dictionary if found, None otherwise
"""
# Check for direct usage field
usage_candidate = payload.get("usage")
if isinstance(usage_candidate, Mapping):
return usage_candidate
# Check for metadata nested usage
metadata_candidate = payload.get("metadata")
if isinstance(metadata_candidate, Mapping):
usage_candidate = metadata_candidate.get("usage")
if isinstance(usage_candidate, Mapping):
return usage_candidate
# Check for common token counting fields directly in payload
# Some MCP servers may include token counts directly
if "total_tokens" in payload or "prompt_tokens" in payload or "completion_tokens" in payload:
usage_dict: dict[str, Any] = {}
for key in (
"prompt_tokens",
"completion_tokens",
"total_tokens",
"prompt_unit_price",
"completion_unit_price",
"total_price",
"currency",
"prompt_price_unit",
"completion_price_unit",
"prompt_price",
"completion_price",
"latency",
"time_to_first_token",
"time_to_generate",
):
if key in payload:
usage_dict[key] = payload[key]
if usage_dict:
return usage_dict
# Recursively search through nested structures
for value in payload.values():
if isinstance(value, Mapping):
found = cls._extract_usage_dict(value)
if found is not None:
return found
elif isinstance(value, list) and not isinstance(value, (str, bytes, bytearray)):
for item in value:
if isinstance(item, Mapping):
found = cls._extract_usage_dict(item)
if found is not None:
return found
return None
def fork_tool_runtime(self, runtime: ToolRuntime) -> MCPTool:
return MCPTool(
entity=self.entity,

View File

@@ -85,7 +85,7 @@ dependencies = [
"starlette==0.49.1",
"tiktoken~=0.9.0",
"transformers~=4.56.1",
"unstructured[docx,epub,md,ppt,pptx]~=0.16.1",
"unstructured[docx,epub,md,ppt,pptx]~=0.18.18",
"yarl~=1.18.3",
"webvtt-py~=0.5.1",
"sseclient-py~=1.8.0",

View File

@@ -36,25 +36,19 @@ def document_indexing_update_task(dataset_id: str, document_id: str):
document.indexing_status = "parsing"
document.processing_started_at = naive_utc_now()
# delete all document segment and index
try:
dataset = session.query(Dataset).where(Dataset.id == dataset_id).first()
if not dataset:
raise Exception("Dataset not found")
dataset = session.query(Dataset).where(Dataset.id == dataset_id).first()
if not dataset:
return
index_type = document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
segments = session.scalars(select(DocumentSegment).where(DocumentSegment.document_id == document_id)).all()
if segments:
index_node_ids = [segment.index_node_id for segment in segments]
# delete from vector index
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
segment_ids = [segment.id for segment in segments]
segment_delete_stmt = delete(DocumentSegment).where(DocumentSegment.id.in_(segment_ids))
session.execute(segment_delete_stmt)
index_type = document.doc_form
segments = session.scalars(select(DocumentSegment).where(DocumentSegment.document_id == document_id)).all()
index_node_ids = [segment.index_node_id for segment in segments]
clean_success = False
try:
index_processor = IndexProcessorFactory(index_type).init_index_processor()
if index_node_ids:
index_processor.clean(dataset, index_node_ids, with_keywords=True, delete_child_chunks=True)
end_at = time.perf_counter()
logger.info(
click.style(
@@ -64,15 +58,21 @@ def document_indexing_update_task(dataset_id: str, document_id: str):
fg="green",
)
)
except Exception:
logger.exception("Cleaned document when document update data source or process rule failed")
clean_success = True
except Exception:
logger.exception("Failed to clean document index during update, document_id: %s", document_id)
try:
indexing_runner = IndexingRunner()
indexing_runner.run([document])
end_at = time.perf_counter()
logger.info(click.style(f"update document: {document.id} latency: {end_at - start_at}", fg="green"))
except DocumentIsPausedError as ex:
logger.info(click.style(str(ex), fg="yellow"))
except Exception:
logger.exception("document_indexing_update_task failed, document_id: %s", document_id)
if clean_success:
with session_factory.create_session() as session, session.begin():
segment_delete_stmt = delete(DocumentSegment).where(DocumentSegment.document_id == document_id)
session.execute(segment_delete_stmt)
try:
indexing_runner = IndexingRunner()
indexing_runner.run([document])
end_at = time.perf_counter()
logger.info(click.style(f"update document: {document.id} latency: {end_at - start_at}", fg="green"))
except DocumentIsPausedError as ex:
logger.info(click.style(str(ex), fg="yellow"))
except Exception:
logger.exception("document_indexing_update_task failed, document_id: %s", document_id)

View File

@@ -1,4 +1,5 @@
import base64
from decimal import Decimal
from unittest.mock import Mock, patch
import pytest
@@ -9,8 +10,10 @@ from core.mcp.types import (
CallToolResult,
EmbeddedResource,
ImageContent,
TextContent,
TextResourceContents,
)
from core.model_runtime.entities.llm_entities import LLMUsage
from core.tools.__base.tool_runtime import ToolRuntime
from core.tools.entities.common_entities import I18nObject
from core.tools.entities.tool_entities import ToolEntity, ToolIdentity, ToolInvokeMessage
@@ -120,3 +123,231 @@ class TestMCPToolInvoke:
# Validate values
values = {m.message.variable_name: m.message.variable_value for m in var_msgs}
assert values == {"a": 1, "b": "x"}
class TestMCPToolUsageExtraction:
"""Test usage metadata extraction from MCP tool results."""
def test_extract_usage_dict_from_direct_usage_field(self) -> None:
"""Test extraction when usage is directly in meta.usage field."""
meta = {
"usage": {
"prompt_tokens": 100,
"completion_tokens": 50,
"total_tokens": 150,
"total_price": "0.001",
"currency": "USD",
}
}
usage_dict = MCPTool._extract_usage_dict(meta)
assert usage_dict is not None
assert usage_dict["prompt_tokens"] == 100
assert usage_dict["completion_tokens"] == 50
assert usage_dict["total_tokens"] == 150
assert usage_dict["total_price"] == "0.001"
assert usage_dict["currency"] == "USD"
def test_extract_usage_dict_from_nested_metadata(self) -> None:
"""Test extraction when usage is nested in meta.metadata.usage."""
meta = {
"metadata": {
"usage": {
"prompt_tokens": 200,
"completion_tokens": 100,
"total_tokens": 300,
}
}
}
usage_dict = MCPTool._extract_usage_dict(meta)
assert usage_dict is not None
assert usage_dict["prompt_tokens"] == 200
assert usage_dict["total_tokens"] == 300
def test_extract_usage_dict_from_flat_token_fields(self) -> None:
"""Test extraction when token counts are directly in meta."""
meta = {
"prompt_tokens": 150,
"completion_tokens": 75,
"total_tokens": 225,
"currency": "EUR",
}
usage_dict = MCPTool._extract_usage_dict(meta)
assert usage_dict is not None
assert usage_dict["prompt_tokens"] == 150
assert usage_dict["completion_tokens"] == 75
assert usage_dict["total_tokens"] == 225
assert usage_dict["currency"] == "EUR"
def test_extract_usage_dict_recursive(self) -> None:
"""Test recursive search through nested structures."""
meta = {
"custom": {
"nested": {
"usage": {
"total_tokens": 500,
"prompt_tokens": 300,
"completion_tokens": 200,
}
}
}
}
usage_dict = MCPTool._extract_usage_dict(meta)
assert usage_dict is not None
assert usage_dict["total_tokens"] == 500
def test_extract_usage_dict_from_list(self) -> None:
"""Test extraction from nested list structures."""
meta = {
"items": [
{"usage": {"total_tokens": 100}},
{"other": "data"},
]
}
usage_dict = MCPTool._extract_usage_dict(meta)
assert usage_dict is not None
assert usage_dict["total_tokens"] == 100
def test_extract_usage_dict_returns_none_when_missing(self) -> None:
"""Test that None is returned when no usage data is present."""
meta = {"other": "data", "custom": {"nested": {"value": 123}}}
usage_dict = MCPTool._extract_usage_dict(meta)
assert usage_dict is None
def test_extract_usage_dict_empty_meta(self) -> None:
"""Test with empty meta dict."""
usage_dict = MCPTool._extract_usage_dict({})
assert usage_dict is None
def test_derive_usage_from_result_with_meta(self) -> None:
"""Test _derive_usage_from_result with populated meta."""
meta = {
"usage": {
"prompt_tokens": 100,
"completion_tokens": 50,
"total_tokens": 150,
"total_price": "0.0015",
"currency": "USD",
}
}
result = CallToolResult(content=[], _meta=meta)
usage = MCPTool._derive_usage_from_result(result)
assert isinstance(usage, LLMUsage)
assert usage.prompt_tokens == 100
assert usage.completion_tokens == 50
assert usage.total_tokens == 150
assert usage.total_price == Decimal("0.0015")
assert usage.currency == "USD"
def test_derive_usage_from_result_without_meta(self) -> None:
"""Test _derive_usage_from_result with no meta returns empty usage."""
result = CallToolResult(content=[], meta=None)
usage = MCPTool._derive_usage_from_result(result)
assert isinstance(usage, LLMUsage)
assert usage.total_tokens == 0
assert usage.prompt_tokens == 0
assert usage.completion_tokens == 0
def test_derive_usage_from_result_calculates_total_tokens(self) -> None:
"""Test that total_tokens is calculated when missing."""
meta = {
"usage": {
"prompt_tokens": 100,
"completion_tokens": 50,
# total_tokens is missing
}
}
result = CallToolResult(content=[], _meta=meta)
usage = MCPTool._derive_usage_from_result(result)
assert usage.total_tokens == 150 # 100 + 50
assert usage.prompt_tokens == 100
assert usage.completion_tokens == 50
def test_invoke_sets_latest_usage_from_meta(self) -> None:
"""Test that _invoke sets _latest_usage from result meta."""
tool = _make_mcp_tool()
meta = {
"usage": {
"prompt_tokens": 200,
"completion_tokens": 100,
"total_tokens": 300,
"total_price": "0.003",
"currency": "USD",
}
}
result = CallToolResult(content=[TextContent(type="text", text="test")], _meta=meta)
with patch.object(tool, "invoke_remote_mcp_tool", return_value=result):
list(tool._invoke(user_id="test_user", tool_parameters={}))
# Verify latest_usage was set correctly
assert tool.latest_usage.prompt_tokens == 200
assert tool.latest_usage.completion_tokens == 100
assert tool.latest_usage.total_tokens == 300
assert tool.latest_usage.total_price == Decimal("0.003")
def test_invoke_with_no_meta_returns_empty_usage(self) -> None:
"""Test that _invoke returns empty usage when no meta is present."""
tool = _make_mcp_tool()
result = CallToolResult(content=[TextContent(type="text", text="test")], _meta=None)
with patch.object(tool, "invoke_remote_mcp_tool", return_value=result):
list(tool._invoke(user_id="test_user", tool_parameters={}))
# Verify latest_usage is empty
assert tool.latest_usage.total_tokens == 0
assert tool.latest_usage.prompt_tokens == 0
assert tool.latest_usage.completion_tokens == 0
def test_latest_usage_property_returns_llm_usage(self) -> None:
"""Test that latest_usage property returns LLMUsage instance."""
tool = _make_mcp_tool()
assert isinstance(tool.latest_usage, LLMUsage)
def test_initial_usage_is_empty(self) -> None:
"""Test that MCPTool is initialized with empty usage."""
tool = _make_mcp_tool()
assert tool.latest_usage.total_tokens == 0
assert tool.latest_usage.prompt_tokens == 0
assert tool.latest_usage.completion_tokens == 0
assert tool.latest_usage.total_price == Decimal(0)
@pytest.mark.parametrize(
"meta_data",
[
# Direct usage field
{"usage": {"prompt_tokens": 10, "completion_tokens": 5, "total_tokens": 15}},
# Nested metadata
{"metadata": {"usage": {"total_tokens": 100}}},
# Flat token fields
{"total_tokens": 50, "prompt_tokens": 30, "completion_tokens": 20},
# With price info
{
"usage": {
"total_tokens": 150,
"total_price": "0.002",
"currency": "EUR",
}
},
# Deep nested
{"level1": {"level2": {"usage": {"total_tokens": 200}}}},
],
)
def test_various_meta_formats(self, meta_data) -> None:
"""Test that various meta formats are correctly parsed."""
result = CallToolResult(content=[], _meta=meta_data)
usage = MCPTool._derive_usage_from_result(result)
assert isinstance(usage, LLMUsage)
# Should have at least some usage data
if meta_data.get("usage", {}).get("total_tokens") or meta_data.get("total_tokens"):
expected_total = (
meta_data.get("usage", {}).get("total_tokens")
or meta_data.get("total_tokens")
or meta_data.get("metadata", {}).get("usage", {}).get("total_tokens")
or meta_data.get("level1", {}).get("level2", {}).get("usage", {}).get("total_tokens")
)
if expected_total:
assert usage.total_tokens == expected_total

11
api/uv.lock generated
View File

@@ -1783,7 +1783,7 @@ requires-dist = [
{ name = "starlette", specifier = "==0.49.1" },
{ name = "tiktoken", specifier = "~=0.9.0" },
{ name = "transformers", specifier = "~=4.56.1" },
{ name = "unstructured", extras = ["docx", "epub", "md", "ppt", "pptx"], specifier = "~=0.16.1" },
{ name = "unstructured", extras = ["docx", "epub", "md", "ppt", "pptx"], specifier = "~=0.18.18" },
{ name = "weave", specifier = ">=0.52.16" },
{ name = "weaviate-client", specifier = "==4.17.0" },
{ name = "webvtt-py", specifier = "~=0.5.1" },
@@ -7085,12 +7085,12 @@ wheels = [
[[package]]
name = "unstructured"
version = "0.16.25"
version = "0.18.31"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "backoff" },
{ name = "beautifulsoup4" },
{ name = "chardet" },
{ name = "charset-normalizer" },
{ name = "dataclasses-json" },
{ name = "emoji" },
{ name = "filetype" },
@@ -7098,6 +7098,7 @@ dependencies = [
{ name = "langdetect" },
{ name = "lxml" },
{ name = "nltk" },
{ name = "numba" },
{ name = "numpy" },
{ name = "psutil" },
{ name = "python-iso639" },
@@ -7110,9 +7111,9 @@ dependencies = [
{ name = "unstructured-client" },
{ name = "wrapt" },
]
sdist = { url = "https://files.pythonhosted.org/packages/64/31/98c4c78e305d1294888adf87fd5ee30577a4c393951341ca32b43f167f1e/unstructured-0.16.25.tar.gz", hash = "sha256:73b9b0f51dbb687af572ecdb849a6811710b9cac797ddeab8ee80fa07d8aa5e6", size = 1683097, upload-time = "2025-03-07T11:19:39.507Z" }
sdist = { url = "https://files.pythonhosted.org/packages/a9/5f/64285bd69a538bc28753f1423fcaa9d64cd79a9e7c097171b1f0d27e9cdb/unstructured-0.18.31.tar.gz", hash = "sha256:af4bbe32d1894ae6e755f0da6fc0dd307a1d0adeebe0e7cc6278f6cf744339ca", size = 1707700, upload-time = "2026-01-27T15:33:05.378Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/12/4f/ad08585b5c8a33c82ea119494c4d3023f4796958c56e668b15cc282ec0a0/unstructured-0.16.25-py3-none-any.whl", hash = "sha256:14719ccef2830216cf1c5bf654f75e2bf07b17ca5dcee9da5ac74618130fd337", size = 1769286, upload-time = "2025-03-07T11:19:37.299Z" },
{ url = "https://files.pythonhosted.org/packages/c8/4a/9c43f39d9e443c9bc3f2e379b305bca27110adc653b071221b3132c18de5/unstructured-0.18.31-py3-none-any.whl", hash = "sha256:fab4641176cb9b192ed38048758aa0d9843121d03626d18f42275afb31e5b2d3", size = 1794889, upload-time = "2026-01-27T15:33:03.136Z" },
]
[package.optional-dependencies]

View File

@@ -308,7 +308,7 @@ export const useMarketplaceAllPlugins = (providers: ModelProvider[], searchText:
}, [plugins, collectionPlugins, exclude])
return {
plugins: allPlugins,
plugins: searchText ? plugins : allPlugins,
isLoading: isCollectionLoading || isPluginsLoading,
}
}

View File

@@ -1,7 +1,7 @@
import type { NodeRendererProps } from 'react-arborist'
import type { FileAppearanceType } from '@/app/components/base/file-uploader/types'
import type { TreeNodeData } from '@/app/components/workflow/skill/type'
import { RiArrowDownSLine, RiArrowRightSLine, RiFolderLine, RiFolderOpenLine, RiQuestionLine } from '@remixicon/react'
import { RiArrowDownSLine, RiArrowRightSLine, RiFolderLine, RiFolderOpenLine } from '@remixicon/react'
import { useSize } from 'ahooks'
import * as React from 'react'
import { useCallback, useMemo, useRef } from 'react'
@@ -52,7 +52,7 @@ const FilePickerTreeNode = ({ node, style, dragHandle, onSelectNode }: FilePicke
aria-selected={isSelected}
aria-expanded={isFolder ? node.isOpen : undefined}
className={cn(
'group relative flex h-6 cursor-pointer items-center gap-px overflow-hidden rounded-md',
'group relative flex h-6 cursor-pointer items-center gap-0 overflow-hidden rounded-md',
'hover:bg-state-base-hover',
'focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-inset focus-visible:ring-components-input-border-active',
isSelected && 'bg-state-base-active',
@@ -82,6 +82,12 @@ const FilePickerTreeNode = ({ node, style, dragHandle, onSelectNode }: FilePicke
{node.data.name}
</span>
</div>
{isFolder && (
<span
aria-hidden="true"
className="h-full w-px shrink-0 bg-transparent group-hover:bg-components-panel-bg"
/>
)}
{isFolder && (
<button
type="button"
@@ -89,8 +95,10 @@ const FilePickerTreeNode = ({ node, style, dragHandle, onSelectNode }: FilePicke
onClick={handleToggle}
aria-label={t('skillSidebar.toggleFolder')}
className={cn(
'flex size-6 shrink-0 items-center justify-center rounded-md',
'text-text-tertiary hover:bg-state-base-hover-alt',
'flex size-6 shrink-0 items-center justify-center rounded-r-md',
'bg-transparent text-text-tertiary',
'group-hover:bg-state-base-hover-subtle',
'hover:bg-state-base-hover-subtle',
'focus-visible:outline-none focus-visible:ring-2 focus-visible:ring-inset focus-visible:ring-components-input-border-active',
)}
>
@@ -162,7 +170,6 @@ const FilePickerPanel = ({
<span className="flex-1 text-[12px] font-medium uppercase leading-4 text-text-tertiary">
{t('skillEditor.referenceFiles')}
</span>
<RiQuestionLine className="size-4 text-text-tertiary" aria-hidden="true" />
</div>
)}
<div