mirror of
https://github.com/langgenius/dify.git
synced 2026-02-15 10:00:13 -05:00
Compare commits
113 Commits
feat/agent
...
feature/ta
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a0aa8cdb45 | ||
|
|
ae8618877b | ||
|
|
fad6fa141d | ||
|
|
30821fd26c | ||
|
|
1a9fdd9a65 | ||
|
|
de610cbf39 | ||
|
|
1c55602445 | ||
|
|
a3f1220d23 | ||
|
|
d62e16b9bb | ||
|
|
13f2a43ccc | ||
|
|
6903c31b84 | ||
|
|
b2cc9b255d | ||
|
|
e9f0e1e839 | ||
|
|
cd497a8c52 | ||
|
|
7aab4529e6 | ||
|
|
4bff0cd0ab | ||
|
|
c98870c3f4 | ||
|
|
b06c7c8f33 | ||
|
|
1a2fce7055 | ||
|
|
2b021e8752 | ||
|
|
4a197b9458 | ||
|
|
772ff636ec | ||
|
|
ab1c5a2027 | ||
|
|
33e99f069b | ||
|
|
52af829f1f | ||
|
|
0ef8b5a0ca | ||
|
|
2bfc54314e | ||
|
|
bdd8d5b470 | ||
|
|
4955de5905 | ||
|
|
3bee2ee067 | ||
|
|
328897f81c | ||
|
|
ab078380a3 | ||
|
|
a33ac77a22 | ||
|
|
d3923e7b56 | ||
|
|
2f633de45e | ||
|
|
98c88cec34 | ||
|
|
c6999fb5be | ||
|
|
f7f9a08fa5 | ||
|
|
5008f5e89b | ||
|
|
1dd89a02ea | ||
|
|
5bf4114d6f | ||
|
|
a56e94ba8e | ||
|
|
11f1782df0 | ||
|
|
8cf5d9a6a1 | ||
|
|
0ec2b12e65 | ||
|
|
f33b1a3332 | ||
|
|
08026f7399 | ||
|
|
18e051bd66 | ||
|
|
42f991dbef | ||
|
|
b1b2c9636f | ||
|
|
01f17b7ddc | ||
|
|
14b2e5bd0d | ||
|
|
d095bd413b | ||
|
|
3473ff7ad1 | ||
|
|
138c56bd6e | ||
|
|
c327d0bb44 | ||
|
|
e4b97fba29 | ||
|
|
7f9884e7a1 | ||
|
|
e389cd1665 | ||
|
|
87f348a0de | ||
|
|
206706987d | ||
|
|
91da784f84 | ||
|
|
a129e684cc | ||
|
|
fe07c810ba | ||
|
|
a22cc5bc5e | ||
|
|
1fbdf6b465 | ||
|
|
491e1fd6a4 | ||
|
|
0e33dfb5c2 | ||
|
|
ea708e7a32 | ||
|
|
c09e29c3f8 | ||
|
|
2d53ba8671 | ||
|
|
9be863fefa | ||
|
|
8f43629cd8 | ||
|
|
9ee71902c1 | ||
|
|
a012c87445 | ||
|
|
450578d4c0 | ||
|
|
837237aa6d | ||
|
|
b63dfbf654 | ||
|
|
51ea87ab85 | ||
|
|
00698e41b7 | ||
|
|
df938a4543 | ||
|
|
9161936f41 | ||
|
|
f9a21b56ab | ||
|
|
220e1df847 | ||
|
|
8cfdde594c | ||
|
|
31a8fd810c | ||
|
|
9fad97ec9b | ||
|
|
0c2729d9b3 | ||
|
|
a2e03b811e | ||
|
|
1e10bf525c | ||
|
|
8b1af36d94 | ||
|
|
0711dd4159 | ||
|
|
ae0a26f5b6 | ||
|
|
d4432ed80f | ||
|
|
9d9f027246 | ||
|
|
77f097ce76 | ||
|
|
7843afc91c | ||
|
|
98df99b0ca | ||
|
|
9848823dcd | ||
|
|
5ad2385799 | ||
|
|
7774a1312e | ||
|
|
91d44719f4 | ||
|
|
b2cbeeae92 | ||
|
|
cd1af04dee | ||
|
|
fe0802262c | ||
|
|
c5b99ebd17 | ||
|
|
adaf0e32c0 | ||
|
|
27a803a6f0 | ||
|
|
25ff4ae5da | ||
|
|
7ccf858ce6 | ||
|
|
885f226f77 | ||
|
|
a422908efd | ||
|
|
d8a0291382 |
1
.agent/skills
Symbolic link
1
.agent/skills
Symbolic link
@@ -0,0 +1 @@
|
||||
../.claude/skills
|
||||
@@ -5,5 +5,18 @@
|
||||
"typescript-lsp@claude-plugins-official": true,
|
||||
"pyright-lsp@claude-plugins-official": true,
|
||||
"ralph-loop@claude-plugins-official": true
|
||||
},
|
||||
"hooks": {
|
||||
"PreToolUse": [
|
||||
{
|
||||
"matcher": "Bash",
|
||||
"hooks": [
|
||||
{
|
||||
"type": "command",
|
||||
"command": "npx -y block-no-verify@1.1.1"
|
||||
}
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
46
.claude/skills/orpc-contract-first/SKILL.md
Normal file
46
.claude/skills/orpc-contract-first/SKILL.md
Normal file
@@ -0,0 +1,46 @@
|
||||
---
|
||||
name: orpc-contract-first
|
||||
description: Guide for implementing oRPC contract-first API patterns in Dify frontend. Triggers when creating new API contracts, adding service endpoints, integrating TanStack Query with typed contracts, or migrating legacy service calls to oRPC. Use for all API layer work in web/contract and web/service directories.
|
||||
---
|
||||
|
||||
# oRPC Contract-First Development
|
||||
|
||||
## Project Structure
|
||||
|
||||
```
|
||||
web/contract/
|
||||
├── base.ts # Base contract (inputStructure: 'detailed')
|
||||
├── router.ts # Router composition & type exports
|
||||
├── marketplace.ts # Marketplace contracts
|
||||
└── console/ # Console contracts by domain
|
||||
├── system.ts
|
||||
└── billing.ts
|
||||
```
|
||||
|
||||
## Workflow
|
||||
|
||||
1. **Create contract** in `web/contract/console/{domain}.ts`
|
||||
- Import `base` from `../base` and `type` from `@orpc/contract`
|
||||
- Define route with `path`, `method`, `input`, `output`
|
||||
|
||||
2. **Register in router** at `web/contract/router.ts`
|
||||
- Import directly from domain file (no barrel files)
|
||||
- Nest by API prefix: `billing: { invoices, bindPartnerStack }`
|
||||
|
||||
3. **Create hooks** in `web/service/use-{domain}.ts`
|
||||
- Use `consoleQuery.{group}.{contract}.queryKey()` for query keys
|
||||
- Use `consoleClient.{group}.{contract}()` for API calls
|
||||
|
||||
## Key Rules
|
||||
|
||||
- **Input structure**: Always use `{ params, query?, body? }` format
|
||||
- **Path params**: Use `{paramName}` in path, match in `params` object
|
||||
- **Router nesting**: Group by API prefix (e.g., `/billing/*` → `billing: {}`)
|
||||
- **No barrel files**: Import directly from specific files
|
||||
- **Types**: Import from `@/types/`, use `type<T>()` helper
|
||||
|
||||
## Type Export
|
||||
|
||||
```typescript
|
||||
export type ConsoleInputs = InferContractRouterInputs<typeof consoleRouterContract>
|
||||
```
|
||||
6
.github/workflows/api-tests.yml
vendored
6
.github/workflows/api-tests.yml
vendored
@@ -39,12 +39,6 @@ jobs:
|
||||
- name: Install dependencies
|
||||
run: uv sync --project api --dev
|
||||
|
||||
- name: Run pyrefly check
|
||||
run: |
|
||||
cd api
|
||||
uv add --dev pyrefly
|
||||
uv run pyrefly check || true
|
||||
|
||||
- name: Run dify config tests
|
||||
run: uv run --project api dev/pytest/pytest_config_tests.py
|
||||
|
||||
|
||||
4
.github/workflows/autofix.yml
vendored
4
.github/workflows/autofix.yml
vendored
@@ -16,14 +16,14 @@ jobs:
|
||||
|
||||
- name: Check Docker Compose inputs
|
||||
id: docker-compose-changes
|
||||
uses: tj-actions/changed-files@v46
|
||||
uses: tj-actions/changed-files@v47
|
||||
with:
|
||||
files: |
|
||||
docker/generate_docker_compose
|
||||
docker/.env.example
|
||||
docker/docker-compose-template.yaml
|
||||
docker/docker-compose.yaml
|
||||
- uses: actions/setup-python@v5
|
||||
- uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.11"
|
||||
|
||||
|
||||
2
.github/workflows/build-push.yml
vendored
2
.github/workflows/build-push.yml
vendored
@@ -112,7 +112,7 @@ jobs:
|
||||
context: "web"
|
||||
steps:
|
||||
- name: Download digests
|
||||
uses: actions/download-artifact@v4
|
||||
uses: actions/download-artifact@v7
|
||||
with:
|
||||
path: /tmp/digests
|
||||
pattern: digests-${{ matrix.context }}-*
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
name: Deploy Trigger Dev
|
||||
name: Deploy Agent Dev
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
@@ -7,7 +7,7 @@ on:
|
||||
workflow_run:
|
||||
workflows: ["Build and Push API & Web"]
|
||||
branches:
|
||||
- "deploy/trigger-dev"
|
||||
- "deploy/agent-dev"
|
||||
types:
|
||||
- completed
|
||||
|
||||
@@ -16,12 +16,12 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
if: |
|
||||
github.event.workflow_run.conclusion == 'success' &&
|
||||
github.event.workflow_run.head_branch == 'deploy/trigger-dev'
|
||||
github.event.workflow_run.head_branch == 'deploy/agent-dev'
|
||||
steps:
|
||||
- name: Deploy to server
|
||||
uses: appleboy/ssh-action@v0.1.8
|
||||
uses: appleboy/ssh-action@v1
|
||||
with:
|
||||
host: ${{ secrets.TRIGGER_SSH_HOST }}
|
||||
host: ${{ secrets.AGENT_DEV_SSH_HOST }}
|
||||
username: ${{ secrets.SSH_USER }}
|
||||
key: ${{ secrets.SSH_PRIVATE_KEY }}
|
||||
script: |
|
||||
2
.github/workflows/deploy-dev.yml
vendored
2
.github/workflows/deploy-dev.yml
vendored
@@ -16,7 +16,7 @@ jobs:
|
||||
github.event.workflow_run.head_branch == 'deploy/dev'
|
||||
steps:
|
||||
- name: Deploy to server
|
||||
uses: appleboy/ssh-action@v0.1.8
|
||||
uses: appleboy/ssh-action@v1
|
||||
with:
|
||||
host: ${{ secrets.SSH_HOST }}
|
||||
username: ${{ secrets.SSH_USER }}
|
||||
|
||||
29
.github/workflows/deploy-hitl.yml
vendored
Normal file
29
.github/workflows/deploy-hitl.yml
vendored
Normal file
@@ -0,0 +1,29 @@
|
||||
name: Deploy HITL
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Build and Push API & Web"]
|
||||
branches:
|
||||
- "feat/hitl-frontend"
|
||||
- "feat/hitl-backend"
|
||||
types:
|
||||
- completed
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
if: |
|
||||
github.event.workflow_run.conclusion == 'success' &&
|
||||
(
|
||||
github.event.workflow_run.head_branch == 'feat/hitl-frontend' ||
|
||||
github.event.workflow_run.head_branch == 'feat/hitl-backend'
|
||||
)
|
||||
steps:
|
||||
- name: Deploy to server
|
||||
uses: appleboy/ssh-action@v1
|
||||
with:
|
||||
host: ${{ secrets.HITL_SSH_HOST }}
|
||||
username: ${{ secrets.SSH_USER }}
|
||||
key: ${{ secrets.SSH_PRIVATE_KEY }}
|
||||
script: |
|
||||
${{ vars.SSH_SCRIPT || secrets.SSH_SCRIPT }}
|
||||
2
.github/workflows/stale.yml
vendored
2
.github/workflows/stale.yml
vendored
@@ -18,7 +18,7 @@ jobs:
|
||||
pull-requests: write
|
||||
|
||||
steps:
|
||||
- uses: actions/stale@v5
|
||||
- uses: actions/stale@v10
|
||||
with:
|
||||
days-before-issue-stale: 15
|
||||
days-before-issue-close: 3
|
||||
|
||||
15
.github/workflows/style.yml
vendored
15
.github/workflows/style.yml
vendored
@@ -65,6 +65,9 @@ jobs:
|
||||
defaults:
|
||||
run:
|
||||
working-directory: ./web
|
||||
permissions:
|
||||
checks: write
|
||||
pull-requests: read
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
@@ -90,7 +93,7 @@ jobs:
|
||||
uses: actions/setup-node@v6
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
with:
|
||||
node-version: 22
|
||||
node-version: 24
|
||||
cache: pnpm
|
||||
cache-dependency-path: ./web/pnpm-lock.yaml
|
||||
|
||||
@@ -103,7 +106,15 @@ jobs:
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
working-directory: ./web
|
||||
run: |
|
||||
pnpm run lint
|
||||
pnpm run lint:report
|
||||
continue-on-error: true
|
||||
|
||||
# - name: Annotate Code
|
||||
# if: steps.changed-files.outputs.any_changed == 'true' && github.event_name == 'pull_request'
|
||||
# uses: DerLev/eslint-annotations@51347b3a0abfb503fc8734d5ae31c4b151297fae
|
||||
# with:
|
||||
# eslint-report: web/eslint_report.json
|
||||
# github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Web type check
|
||||
if: steps.changed-files.outputs.any_changed == 'true'
|
||||
|
||||
8
.github/workflows/tool-test-sdks.yaml
vendored
8
.github/workflows/tool-test-sdks.yaml
vendored
@@ -16,10 +16,6 @@ jobs:
|
||||
name: unit test for Node.js SDK
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
node-version: [16, 18, 20, 22]
|
||||
|
||||
defaults:
|
||||
run:
|
||||
working-directory: sdks/nodejs-client
|
||||
@@ -29,10 +25,10 @@ jobs:
|
||||
with:
|
||||
persist-credentials: false
|
||||
|
||||
- name: Use Node.js ${{ matrix.node-version }}
|
||||
- name: Use Node.js
|
||||
uses: actions/setup-node@v6
|
||||
with:
|
||||
node-version: ${{ matrix.node-version }}
|
||||
node-version: 24
|
||||
cache: ''
|
||||
cache-dependency-path: 'pnpm-lock.yaml'
|
||||
|
||||
|
||||
@@ -1,94 +0,0 @@
|
||||
name: Translate i18n Files Based on English
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [main]
|
||||
paths:
|
||||
- 'web/i18n/en-US/*.json'
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
pull-requests: write
|
||||
|
||||
jobs:
|
||||
check-and-update:
|
||||
if: github.repository == 'langgenius/dify'
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
working-directory: web
|
||||
steps:
|
||||
# Keep use old checkout action version for https://github.com/peter-evans/create-pull-request/issues/4272
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Check for file changes in i18n/en-US
|
||||
id: check_files
|
||||
run: |
|
||||
# Skip check for manual trigger, translate all files
|
||||
if [ "${{ github.event_name }}" == "workflow_dispatch" ]; then
|
||||
echo "FILES_CHANGED=true" >> $GITHUB_ENV
|
||||
echo "FILE_ARGS=" >> $GITHUB_ENV
|
||||
echo "Manual trigger: translating all files"
|
||||
else
|
||||
git fetch origin "${{ github.event.before }}" || true
|
||||
git fetch origin "${{ github.sha }}" || true
|
||||
changed_files=$(git diff --name-only "${{ github.event.before }}" "${{ github.sha }}" -- 'i18n/en-US/*.json')
|
||||
echo "Changed files: $changed_files"
|
||||
if [ -n "$changed_files" ]; then
|
||||
echo "FILES_CHANGED=true" >> $GITHUB_ENV
|
||||
file_args=""
|
||||
for file in $changed_files; do
|
||||
filename=$(basename "$file" .json)
|
||||
file_args="$file_args --file $filename"
|
||||
done
|
||||
echo "FILE_ARGS=$file_args" >> $GITHUB_ENV
|
||||
echo "File arguments: $file_args"
|
||||
else
|
||||
echo "FILES_CHANGED=false" >> $GITHUB_ENV
|
||||
fi
|
||||
fi
|
||||
|
||||
- name: Install pnpm
|
||||
uses: pnpm/action-setup@v4
|
||||
with:
|
||||
package_json_file: web/package.json
|
||||
run_install: false
|
||||
|
||||
- name: Set up Node.js
|
||||
if: env.FILES_CHANGED == 'true'
|
||||
uses: actions/setup-node@v6
|
||||
with:
|
||||
node-version: 'lts/*'
|
||||
cache: pnpm
|
||||
cache-dependency-path: ./web/pnpm-lock.yaml
|
||||
|
||||
- name: Install dependencies
|
||||
if: env.FILES_CHANGED == 'true'
|
||||
working-directory: ./web
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
- name: Generate i18n translations
|
||||
if: env.FILES_CHANGED == 'true'
|
||||
working-directory: ./web
|
||||
run: pnpm run i18n:gen ${{ env.FILE_ARGS }}
|
||||
|
||||
- name: Create Pull Request
|
||||
if: env.FILES_CHANGED == 'true'
|
||||
uses: peter-evans/create-pull-request@v6
|
||||
with:
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
commit-message: 'chore(i18n): update translations based on en-US changes'
|
||||
title: 'chore(i18n): translate i18n files based on en-US changes'
|
||||
body: |
|
||||
This PR was automatically created to update i18n translation files based on changes in en-US locale.
|
||||
|
||||
**Triggered by:** ${{ github.sha }}
|
||||
|
||||
**Changes included:**
|
||||
- Updated translation files for all locales
|
||||
branch: chore/automated-i18n-updates-${{ github.sha }}
|
||||
delete-branch: true
|
||||
421
.github/workflows/translate-i18n-claude.yml
vendored
Normal file
421
.github/workflows/translate-i18n-claude.yml
vendored
Normal file
@@ -0,0 +1,421 @@
|
||||
name: Translate i18n Files with Claude Code
|
||||
|
||||
# Note: claude-code-action doesn't support push events directly.
|
||||
# Push events are handled by trigger-i18n-sync.yml which sends repository_dispatch.
|
||||
# See: https://github.com/langgenius/dify/issues/30743
|
||||
|
||||
on:
|
||||
repository_dispatch:
|
||||
types: [i18n-sync]
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
files:
|
||||
description: 'Specific files to translate (space-separated, e.g., "app common"). Leave empty for all files.'
|
||||
required: false
|
||||
type: string
|
||||
languages:
|
||||
description: 'Specific languages to translate (space-separated, e.g., "zh-Hans ja-JP"). Leave empty for all supported languages.'
|
||||
required: false
|
||||
type: string
|
||||
mode:
|
||||
description: 'Sync mode: incremental (only changes) or full (re-check all keys)'
|
||||
required: false
|
||||
default: 'incremental'
|
||||
type: choice
|
||||
options:
|
||||
- incremental
|
||||
- full
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
pull-requests: write
|
||||
|
||||
jobs:
|
||||
translate:
|
||||
if: github.repository == 'langgenius/dify'
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 60
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 0
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Configure Git
|
||||
run: |
|
||||
git config --global user.name "github-actions[bot]"
|
||||
git config --global user.email "github-actions[bot]@users.noreply.github.com"
|
||||
|
||||
- name: Install pnpm
|
||||
uses: pnpm/action-setup@v4
|
||||
with:
|
||||
package_json_file: web/package.json
|
||||
run_install: false
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
with:
|
||||
node-version: 24
|
||||
cache: pnpm
|
||||
cache-dependency-path: ./web/pnpm-lock.yaml
|
||||
|
||||
- name: Detect changed files and generate diff
|
||||
id: detect_changes
|
||||
run: |
|
||||
if [ "${{ github.event_name }}" == "workflow_dispatch" ]; then
|
||||
# Manual trigger
|
||||
if [ -n "${{ github.event.inputs.files }}" ]; then
|
||||
echo "CHANGED_FILES=${{ github.event.inputs.files }}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
# Get all JSON files in en-US directory
|
||||
files=$(ls web/i18n/en-US/*.json 2>/dev/null | xargs -n1 basename | sed 's/.json$//' | tr '\n' ' ')
|
||||
echo "CHANGED_FILES=$files" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
echo "TARGET_LANGS=${{ github.event.inputs.languages }}" >> $GITHUB_OUTPUT
|
||||
echo "SYNC_MODE=${{ github.event.inputs.mode || 'incremental' }}" >> $GITHUB_OUTPUT
|
||||
|
||||
# For manual trigger with incremental mode, get diff from last commit
|
||||
# For full mode, we'll do a complete check anyway
|
||||
if [ "${{ github.event.inputs.mode }}" == "full" ]; then
|
||||
echo "Full mode: will check all keys" > /tmp/i18n-diff.txt
|
||||
echo "DIFF_AVAILABLE=false" >> $GITHUB_OUTPUT
|
||||
else
|
||||
git diff HEAD~1..HEAD -- 'web/i18n/en-US/*.json' > /tmp/i18n-diff.txt 2>/dev/null || echo "" > /tmp/i18n-diff.txt
|
||||
if [ -s /tmp/i18n-diff.txt ]; then
|
||||
echo "DIFF_AVAILABLE=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "DIFF_AVAILABLE=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
fi
|
||||
elif [ "${{ github.event_name }}" == "repository_dispatch" ]; then
|
||||
# Triggered by push via trigger-i18n-sync.yml workflow
|
||||
# Validate required payload fields
|
||||
if [ -z "${{ github.event.client_payload.changed_files }}" ]; then
|
||||
echo "Error: repository_dispatch payload missing required 'changed_files' field" >&2
|
||||
exit 1
|
||||
fi
|
||||
echo "CHANGED_FILES=${{ github.event.client_payload.changed_files }}" >> $GITHUB_OUTPUT
|
||||
echo "TARGET_LANGS=" >> $GITHUB_OUTPUT
|
||||
echo "SYNC_MODE=${{ github.event.client_payload.sync_mode || 'incremental' }}" >> $GITHUB_OUTPUT
|
||||
|
||||
# Decode the base64-encoded diff from the trigger workflow
|
||||
if [ -n "${{ github.event.client_payload.diff_base64 }}" ]; then
|
||||
if ! echo "${{ github.event.client_payload.diff_base64 }}" | base64 -d > /tmp/i18n-diff.txt 2>&1; then
|
||||
echo "Warning: Failed to decode base64 diff payload" >&2
|
||||
echo "" > /tmp/i18n-diff.txt
|
||||
echo "DIFF_AVAILABLE=false" >> $GITHUB_OUTPUT
|
||||
elif [ -s /tmp/i18n-diff.txt ]; then
|
||||
echo "DIFF_AVAILABLE=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "DIFF_AVAILABLE=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
else
|
||||
echo "" > /tmp/i18n-diff.txt
|
||||
echo "DIFF_AVAILABLE=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
else
|
||||
echo "Unsupported event type: ${{ github.event_name }}"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Truncate diff if too large (keep first 50KB)
|
||||
if [ -f /tmp/i18n-diff.txt ]; then
|
||||
head -c 50000 /tmp/i18n-diff.txt > /tmp/i18n-diff-truncated.txt
|
||||
mv /tmp/i18n-diff-truncated.txt /tmp/i18n-diff.txt
|
||||
fi
|
||||
|
||||
echo "Detected files: $(cat $GITHUB_OUTPUT | grep CHANGED_FILES || echo 'none')"
|
||||
|
||||
- name: Run Claude Code for Translation Sync
|
||||
if: steps.detect_changes.outputs.CHANGED_FILES != ''
|
||||
uses: anthropics/claude-code-action@v1
|
||||
with:
|
||||
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}
|
||||
github_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
prompt: |
|
||||
You are a professional i18n synchronization engineer for the Dify project.
|
||||
Your task is to keep all language translations in sync with the English source (en-US).
|
||||
|
||||
## CRITICAL TOOL RESTRICTIONS
|
||||
- Use **Read** tool to read files (NOT cat or bash)
|
||||
- Use **Edit** tool to modify JSON files (NOT node, jq, or bash scripts)
|
||||
- Use **Bash** ONLY for: git commands, gh commands, pnpm commands
|
||||
- Run bash commands ONE BY ONE, never combine with && or ||
|
||||
- NEVER use `$()` command substitution - it's not supported. Split into separate commands instead.
|
||||
|
||||
## WORKING DIRECTORY & ABSOLUTE PATHS
|
||||
Claude Code sandbox working directory may vary. Always use absolute paths:
|
||||
- For pnpm: `pnpm --dir ${{ github.workspace }}/web <command>`
|
||||
- For git: `git -C ${{ github.workspace }} <command>`
|
||||
- For gh: `gh --repo ${{ github.repository }} <command>`
|
||||
- For file paths: `${{ github.workspace }}/web/i18n/`
|
||||
|
||||
## EFFICIENCY RULES
|
||||
- **ONE Edit per language file** - batch all key additions into a single Edit
|
||||
- Insert new keys at the beginning of JSON (after `{`), lint:fix will sort them
|
||||
- Translate ALL keys for a language mentally first, then do ONE Edit
|
||||
|
||||
## Context
|
||||
- Changed/target files: ${{ steps.detect_changes.outputs.CHANGED_FILES }}
|
||||
- Target languages (empty means all supported): ${{ steps.detect_changes.outputs.TARGET_LANGS }}
|
||||
- Sync mode: ${{ steps.detect_changes.outputs.SYNC_MODE }}
|
||||
- Translation files are located in: ${{ github.workspace }}/web/i18n/{locale}/{filename}.json
|
||||
- Language configuration is in: ${{ github.workspace }}/web/i18n-config/languages.ts
|
||||
- Git diff is available: ${{ steps.detect_changes.outputs.DIFF_AVAILABLE }}
|
||||
|
||||
## CRITICAL DESIGN: Verify First, Then Sync
|
||||
|
||||
You MUST follow this three-phase approach:
|
||||
|
||||
═══════════════════════════════════════════════════════════════
|
||||
║ PHASE 1: VERIFY - Analyze and Generate Change Report ║
|
||||
═══════════════════════════════════════════════════════════════
|
||||
|
||||
### Step 1.1: Analyze Git Diff (for incremental mode)
|
||||
Use the Read tool to read `/tmp/i18n-diff.txt` to see the git diff.
|
||||
|
||||
Parse the diff to categorize changes:
|
||||
- Lines with `+` (not `+++`): Added or modified values
|
||||
- Lines with `-` (not `---`): Removed or old values
|
||||
- Identify specific keys for each category:
|
||||
* ADD: Keys that appear only in `+` lines (new keys)
|
||||
* UPDATE: Keys that appear in both `-` and `+` lines (value changed)
|
||||
* DELETE: Keys that appear only in `-` lines (removed keys)
|
||||
|
||||
### Step 1.2: Read Language Configuration
|
||||
Use the Read tool to read `${{ github.workspace }}/web/i18n-config/languages.ts`.
|
||||
Extract all languages with `supported: true`.
|
||||
|
||||
### Step 1.3: Run i18n:check for Each Language
|
||||
```bash
|
||||
pnpm --dir ${{ github.workspace }}/web install --frozen-lockfile
|
||||
```
|
||||
```bash
|
||||
pnpm --dir ${{ github.workspace }}/web run i18n:check
|
||||
```
|
||||
|
||||
This will report:
|
||||
- Missing keys (need to ADD)
|
||||
- Extra keys (need to DELETE)
|
||||
|
||||
### Step 1.4: Generate Change Report
|
||||
|
||||
Create a structured report identifying:
|
||||
```
|
||||
╔══════════════════════════════════════════════════════════════╗
|
||||
║ I18N SYNC CHANGE REPORT ║
|
||||
╠══════════════════════════════════════════════════════════════╣
|
||||
║ Files to process: [list] ║
|
||||
║ Languages to sync: [list] ║
|
||||
╠══════════════════════════════════════════════════════════════╣
|
||||
║ ADD (New Keys): ║
|
||||
║ - [filename].[key]: "English value" ║
|
||||
║ ... ║
|
||||
╠══════════════════════════════════════════════════════════════╣
|
||||
║ UPDATE (Modified Keys - MUST re-translate): ║
|
||||
║ - [filename].[key]: "Old value" → "New value" ║
|
||||
║ ... ║
|
||||
╠══════════════════════════════════════════════════════════════╣
|
||||
║ DELETE (Extra Keys): ║
|
||||
║ - [language]/[filename].[key] ║
|
||||
║ ... ║
|
||||
╚══════════════════════════════════════════════════════════════╝
|
||||
```
|
||||
|
||||
**IMPORTANT**: For UPDATE detection, compare git diff to find keys where
|
||||
the English value changed. These MUST be re-translated even if target
|
||||
language already has a translation (it's now stale!).
|
||||
|
||||
═══════════════════════════════════════════════════════════════
|
||||
║ PHASE 2: SYNC - Execute Changes Based on Report ║
|
||||
═══════════════════════════════════════════════════════════════
|
||||
|
||||
### Step 2.1: Process ADD Operations (BATCH per language file)
|
||||
|
||||
**CRITICAL WORKFLOW for efficiency:**
|
||||
1. First, translate ALL new keys for ALL languages mentally
|
||||
2. Then, for EACH language file, do ONE Edit operation:
|
||||
- Read the file once
|
||||
- Insert ALL new keys at the beginning (right after the opening `{`)
|
||||
- Don't worry about alphabetical order - lint:fix will sort them later
|
||||
|
||||
Example Edit (adding 3 keys to zh-Hans/app.json):
|
||||
```
|
||||
old_string: '{\n "accessControl"'
|
||||
new_string: '{\n "newKey1": "translation1",\n "newKey2": "translation2",\n "newKey3": "translation3",\n "accessControl"'
|
||||
```
|
||||
|
||||
**IMPORTANT**:
|
||||
- ONE Edit per language file (not one Edit per key!)
|
||||
- Always use the Edit tool. NEVER use bash scripts, node, or jq.
|
||||
|
||||
### Step 2.2: Process UPDATE Operations
|
||||
|
||||
**IMPORTANT: Special handling for zh-Hans and ja-JP**
|
||||
If zh-Hans or ja-JP files were ALSO modified in the same push:
|
||||
- Run: `git -C ${{ github.workspace }} diff HEAD~1 --name-only` and check for zh-Hans or ja-JP files
|
||||
- If found, it means someone manually translated them. Apply these rules:
|
||||
|
||||
1. **Missing keys**: Still ADD them (completeness required)
|
||||
2. **Existing translations**: Compare with the NEW English value:
|
||||
- If translation is **completely wrong** or **unrelated** → Update it
|
||||
- If translation is **roughly correct** (captures the meaning) → Keep it, respect manual work
|
||||
- When in doubt, **keep the manual translation**
|
||||
|
||||
Example:
|
||||
- English changed: "Save" → "Save Changes"
|
||||
- Manual translation: "保存更改" → Keep it (correct meaning)
|
||||
- Manual translation: "删除" → Update it (completely wrong)
|
||||
|
||||
For other languages:
|
||||
Use Edit tool to replace the old value with the new translation.
|
||||
You can batch multiple updates in one Edit if they are adjacent.
|
||||
|
||||
### Step 2.3: Process DELETE Operations
|
||||
For extra keys reported by i18n:check:
|
||||
- Run: `pnpm --dir ${{ github.workspace }}/web run i18n:check --auto-remove`
|
||||
- Or manually remove from target language JSON files
|
||||
|
||||
## Translation Guidelines
|
||||
|
||||
- PRESERVE all placeholders exactly as-is:
|
||||
- `{{variable}}` - Mustache interpolation
|
||||
- `${variable}` - Template literal
|
||||
- `<tag>content</tag>` - HTML tags
|
||||
- `_one`, `_other` - Pluralization suffixes (these are KEY suffixes, not values)
|
||||
- Use appropriate language register (formal/informal) based on existing translations
|
||||
- Match existing translation style in each language
|
||||
- Technical terms: check existing conventions per language
|
||||
- For CJK languages: no spaces between characters unless necessary
|
||||
- For RTL languages (ar-TN, fa-IR): ensure proper text handling
|
||||
|
||||
## Output Format Requirements
|
||||
- Alphabetical key ordering (if original file uses it)
|
||||
- 2-space indentation
|
||||
- Trailing newline at end of file
|
||||
- Valid JSON (use proper escaping for special characters)
|
||||
|
||||
═══════════════════════════════════════════════════════════════
|
||||
║ PHASE 3: RE-VERIFY - Confirm All Issues Resolved ║
|
||||
═══════════════════════════════════════════════════════════════
|
||||
|
||||
### Step 3.1: Run Lint Fix (IMPORTANT!)
|
||||
```bash
|
||||
pnpm --dir ${{ github.workspace }}/web lint:fix --quiet -- 'i18n/**/*.json'
|
||||
```
|
||||
This ensures:
|
||||
- JSON keys are sorted alphabetically (jsonc/sort-keys rule)
|
||||
- Valid i18n keys (dify-i18n/valid-i18n-keys rule)
|
||||
- No extra keys (dify-i18n/no-extra-keys rule)
|
||||
|
||||
### Step 3.2: Run Final i18n Check
|
||||
```bash
|
||||
pnpm --dir ${{ github.workspace }}/web run i18n:check
|
||||
```
|
||||
|
||||
### Step 3.3: Fix Any Remaining Issues
|
||||
If check reports issues:
|
||||
- Go back to PHASE 2 for unresolved items
|
||||
- Repeat until check passes
|
||||
|
||||
### Step 3.4: Generate Final Summary
|
||||
```
|
||||
╔══════════════════════════════════════════════════════════════╗
|
||||
║ SYNC COMPLETED SUMMARY ║
|
||||
╠══════════════════════════════════════════════════════════════╣
|
||||
║ Language │ Added │ Updated │ Deleted │ Status ║
|
||||
╠══════════════════════════════════════════════════════════════╣
|
||||
║ zh-Hans │ 5 │ 2 │ 1 │ ✓ Complete ║
|
||||
║ ja-JP │ 5 │ 2 │ 1 │ ✓ Complete ║
|
||||
║ ... │ ... │ ... │ ... │ ... ║
|
||||
╠══════════════════════════════════════════════════════════════╣
|
||||
║ i18n:check │ PASSED - All keys in sync ║
|
||||
╚══════════════════════════════════════════════════════════════╝
|
||||
```
|
||||
|
||||
## Mode-Specific Behavior
|
||||
|
||||
**SYNC_MODE = "incremental"** (default):
|
||||
- Focus on keys identified from git diff
|
||||
- Also check i18n:check output for any missing/extra keys
|
||||
- Efficient for small changes
|
||||
|
||||
**SYNC_MODE = "full"**:
|
||||
- Compare ALL keys between en-US and each language
|
||||
- Run i18n:check to identify all discrepancies
|
||||
- Use for first-time sync or fixing historical issues
|
||||
|
||||
## Important Notes
|
||||
|
||||
1. Always run i18n:check BEFORE and AFTER making changes
|
||||
2. The check script is the source of truth for missing/extra keys
|
||||
3. For UPDATE scenario: git diff is the source of truth for changed values
|
||||
4. Create a single commit with all translation changes
|
||||
5. If any translation fails, continue with others and report failures
|
||||
|
||||
═══════════════════════════════════════════════════════════════
|
||||
║ PHASE 4: COMMIT AND CREATE PR ║
|
||||
═══════════════════════════════════════════════════════════════
|
||||
|
||||
After all translations are complete and verified:
|
||||
|
||||
### Step 4.1: Check for changes
|
||||
```bash
|
||||
git -C ${{ github.workspace }} status --porcelain
|
||||
```
|
||||
|
||||
If there are changes:
|
||||
|
||||
### Step 4.2: Create a new branch and commit
|
||||
Run these git commands ONE BY ONE (not combined with &&).
|
||||
**IMPORTANT**: Do NOT use `$()` command substitution. Use two separate commands:
|
||||
|
||||
1. First, get the timestamp:
|
||||
```bash
|
||||
date +%Y%m%d-%H%M%S
|
||||
```
|
||||
(Note the output, e.g., "20260115-143052")
|
||||
|
||||
2. Then create branch using the timestamp value:
|
||||
```bash
|
||||
git -C ${{ github.workspace }} checkout -b chore/i18n-sync-20260115-143052
|
||||
```
|
||||
(Replace "20260115-143052" with the actual timestamp from step 1)
|
||||
|
||||
3. Stage changes:
|
||||
```bash
|
||||
git -C ${{ github.workspace }} add web/i18n/
|
||||
```
|
||||
|
||||
4. Commit:
|
||||
```bash
|
||||
git -C ${{ github.workspace }} commit -m "chore(i18n): sync translations with en-US - Mode: ${{ steps.detect_changes.outputs.SYNC_MODE }}"
|
||||
```
|
||||
|
||||
5. Push:
|
||||
```bash
|
||||
git -C ${{ github.workspace }} push origin HEAD
|
||||
```
|
||||
|
||||
### Step 4.3: Create Pull Request
|
||||
```bash
|
||||
gh pr create --repo ${{ github.repository }} --title "chore(i18n): sync translations with en-US" --body "## Summary
|
||||
|
||||
This PR was automatically generated to sync i18n translation files.
|
||||
|
||||
### Changes
|
||||
- Mode: ${{ steps.detect_changes.outputs.SYNC_MODE }}
|
||||
- Files processed: ${{ steps.detect_changes.outputs.CHANGED_FILES }}
|
||||
|
||||
### Verification
|
||||
- [x] \`i18n:check\` passed
|
||||
- [x] \`lint:fix\` applied
|
||||
|
||||
🤖 Generated with Claude Code GitHub Action" --base main
|
||||
```
|
||||
|
||||
claude_args: |
|
||||
--max-turns 150
|
||||
--allowedTools "Read,Write,Edit,Bash(git *),Bash(git:*),Bash(gh *),Bash(gh:*),Bash(pnpm *),Bash(pnpm:*),Bash(date *),Bash(date:*),Glob,Grep"
|
||||
66
.github/workflows/trigger-i18n-sync.yml
vendored
Normal file
66
.github/workflows/trigger-i18n-sync.yml
vendored
Normal file
@@ -0,0 +1,66 @@
|
||||
name: Trigger i18n Sync on Push
|
||||
|
||||
# This workflow bridges the push event to repository_dispatch
|
||||
# because claude-code-action doesn't support push events directly.
|
||||
# See: https://github.com/langgenius/dify/issues/30743
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [main]
|
||||
paths:
|
||||
- 'web/i18n/en-US/*.json'
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
jobs:
|
||||
trigger:
|
||||
if: github.repository == 'langgenius/dify'
|
||||
runs-on: ubuntu-latest
|
||||
timeout-minutes: 5
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Detect changed files and generate diff
|
||||
id: detect
|
||||
run: |
|
||||
BEFORE_SHA="${{ github.event.before }}"
|
||||
# Handle edge case: force push may have null/zero SHA
|
||||
if [ -z "$BEFORE_SHA" ] || [ "$BEFORE_SHA" = "0000000000000000000000000000000000000000" ]; then
|
||||
BEFORE_SHA="HEAD~1"
|
||||
fi
|
||||
|
||||
# Detect changed i18n files
|
||||
changed=$(git diff --name-only "$BEFORE_SHA" "${{ github.sha }}" -- 'web/i18n/en-US/*.json' 2>/dev/null | xargs -n1 basename 2>/dev/null | sed 's/.json$//' | tr '\n' ' ' || echo "")
|
||||
echo "changed_files=$changed" >> $GITHUB_OUTPUT
|
||||
|
||||
# Generate diff for context
|
||||
git diff "$BEFORE_SHA" "${{ github.sha }}" -- 'web/i18n/en-US/*.json' > /tmp/i18n-diff.txt 2>/dev/null || echo "" > /tmp/i18n-diff.txt
|
||||
|
||||
# Truncate if too large (keep first 50KB to match receiving workflow)
|
||||
head -c 50000 /tmp/i18n-diff.txt > /tmp/i18n-diff-truncated.txt
|
||||
mv /tmp/i18n-diff-truncated.txt /tmp/i18n-diff.txt
|
||||
|
||||
# Base64 encode the diff for safe JSON transport (portable, single-line)
|
||||
diff_base64=$(base64 < /tmp/i18n-diff.txt | tr -d '\n')
|
||||
echo "diff_base64=$diff_base64" >> $GITHUB_OUTPUT
|
||||
|
||||
if [ -n "$changed" ]; then
|
||||
echo "has_changes=true" >> $GITHUB_OUTPUT
|
||||
echo "Detected changed files: $changed"
|
||||
else
|
||||
echo "has_changes=false" >> $GITHUB_OUTPUT
|
||||
echo "No i18n changes detected"
|
||||
fi
|
||||
|
||||
- name: Trigger i18n sync workflow
|
||||
if: steps.detect.outputs.has_changes == 'true'
|
||||
uses: peter-evans/repository-dispatch@v3
|
||||
with:
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
event-type: i18n-sync
|
||||
client-payload: '{"changed_files": "${{ steps.detect.outputs.changed_files }}", "diff_base64": "${{ steps.detect.outputs.diff_base64 }}", "sync_mode": "incremental", "trigger_sha": "${{ github.sha }}"}'
|
||||
2
.github/workflows/web-tests.yml
vendored
2
.github/workflows/web-tests.yml
vendored
@@ -31,7 +31,7 @@ jobs:
|
||||
- name: Setup Node.js
|
||||
uses: actions/setup-node@v6
|
||||
with:
|
||||
node-version: 22
|
||||
node-version: 24
|
||||
cache: pnpm
|
||||
cache-dependency-path: ./web/pnpm-lock.yaml
|
||||
|
||||
|
||||
@@ -12,12 +12,8 @@ The codebase is split into:
|
||||
|
||||
## Backend Workflow
|
||||
|
||||
- Read `api/AGENTS.md` for details
|
||||
- Run backend CLI commands through `uv run --project api <command>`.
|
||||
|
||||
- Before submission, all backend modifications must pass local checks: `make lint`, `make type-check`, and `uv run --project api --dev dev/pytest/pytest_unit_tests.sh`.
|
||||
|
||||
- Use Makefile targets for linting and formatting; `make lint` and `make type-check` cover the required checks.
|
||||
|
||||
- Integration tests are CI-only and are not expected to run in the local environment.
|
||||
|
||||
## Frontend Workflow
|
||||
|
||||
12
Makefile
12
Makefile
@@ -61,7 +61,8 @@ check:
|
||||
|
||||
lint:
|
||||
@echo "🔧 Running ruff format, check with fixes, import linter, and dotenv-linter..."
|
||||
@uv run --project api --dev sh -c 'ruff format ./api && ruff check --fix ./api'
|
||||
@uv run --project api --dev ruff format ./api
|
||||
@uv run --project api --dev ruff check --fix ./api
|
||||
@uv run --directory api --dev lint-imports
|
||||
@uv run --project api --dev dotenv-linter ./api/.env.example ./web/.env.example
|
||||
@echo "✅ Linting complete"
|
||||
@@ -73,7 +74,12 @@ type-check:
|
||||
|
||||
test:
|
||||
@echo "🧪 Running backend unit tests..."
|
||||
@uv run --project api --dev dev/pytest/pytest_unit_tests.sh
|
||||
@if [ -n "$(TARGET_TESTS)" ]; then \
|
||||
echo "Target: $(TARGET_TESTS)"; \
|
||||
uv run --project api --dev pytest $(TARGET_TESTS); \
|
||||
else \
|
||||
uv run --project api --dev dev/pytest/pytest_unit_tests.sh; \
|
||||
fi
|
||||
@echo "✅ Tests complete"
|
||||
|
||||
# Build Docker images
|
||||
@@ -125,7 +131,7 @@ help:
|
||||
@echo " make check - Check code with ruff"
|
||||
@echo " make lint - Format, fix, and lint code (ruff, imports, dotenv)"
|
||||
@echo " make type-check - Run type checking with basedpyright"
|
||||
@echo " make test - Run backend unit tests"
|
||||
@echo " make test - Run backend unit tests (or TARGET_TESTS=./api/tests/<target_tests>)"
|
||||
@echo ""
|
||||
@echo "Docker Build Targets:"
|
||||
@echo " make build-web - Build web Docker image"
|
||||
|
||||
@@ -417,6 +417,8 @@ SMTP_USERNAME=123
|
||||
SMTP_PASSWORD=abc
|
||||
SMTP_USE_TLS=true
|
||||
SMTP_OPPORTUNISTIC_TLS=false
|
||||
# Optional: override the local hostname used for SMTP HELO/EHLO
|
||||
SMTP_LOCAL_HOSTNAME=
|
||||
# Sendgid configuration
|
||||
SENDGRID_API_KEY=
|
||||
# Sentry configuration
|
||||
@@ -589,6 +591,7 @@ ENABLE_CLEAN_UNUSED_DATASETS_TASK=false
|
||||
ENABLE_CREATE_TIDB_SERVERLESS_TASK=false
|
||||
ENABLE_UPDATE_TIDB_SERVERLESS_STATUS_TASK=false
|
||||
ENABLE_CLEAN_MESSAGES=false
|
||||
ENABLE_WORKFLOW_RUN_CLEANUP_TASK=false
|
||||
ENABLE_MAIL_CLEAN_DOCUMENT_NOTIFY_TASK=false
|
||||
ENABLE_DATASETS_QUEUE_MONITOR=false
|
||||
ENABLE_CHECK_UPGRADABLE_PLUGIN_TASK=true
|
||||
@@ -712,3 +715,4 @@ ANNOTATION_IMPORT_MAX_CONCURRENT=5
|
||||
SANDBOX_EXPIRED_RECORDS_CLEAN_GRACEFUL_PERIOD=21
|
||||
SANDBOX_EXPIRED_RECORDS_CLEAN_BATCH_SIZE=1000
|
||||
SANDBOX_EXPIRED_RECORDS_RETENTION_DAYS=30
|
||||
|
||||
|
||||
248
api/AGENTS.md
248
api/AGENTS.md
@@ -1,62 +1,236 @@
|
||||
# Agent Skill Index
|
||||
# API Agent Guide
|
||||
|
||||
## Agent Notes (must-check)
|
||||
|
||||
Before you start work on any backend file under `api/`, you MUST check whether a related note exists under:
|
||||
|
||||
- `agent-notes/<same-relative-path-as-target-file>.md`
|
||||
|
||||
Rules:
|
||||
|
||||
- **Path mapping**: for a target file `<path>/<name>.py`, the note must be `agent-notes/<path>/<name>.py.md` (same folder structure, same filename, plus `.md`).
|
||||
- **Before working**:
|
||||
- If the note exists, read it first and follow any constraints/decisions recorded there.
|
||||
- If the note conflicts with the current code, or references an "origin" file/path that has been deleted, renamed, or migrated, treat the **code as the single source of truth** and update the note to match reality.
|
||||
- If the note does not exist, create it with a short architecture/intent summary and any relevant invariants/edge cases.
|
||||
- **During working**:
|
||||
- Keep the note in sync as you discover constraints, make decisions, or change approach.
|
||||
- If you move/rename a file, migrate its note to the new mapped path (and fix any outdated references inside the note).
|
||||
- Record non-obvious edge cases, trade-offs, and the test/verification plan as you go (not just at the end).
|
||||
- Keep notes **coherent**: integrate new findings into the relevant sections and rewrite for clarity; avoid append-only “recent fix” / changelog-style additions unless the note is explicitly intended to be a changelog.
|
||||
- **When finishing work**:
|
||||
- Update the related note(s) to reflect what changed, why, and any new edge cases/tests.
|
||||
- If a file is deleted, remove or clearly deprecate the corresponding note so it cannot be mistaken as current guidance.
|
||||
- Keep notes concise and accurate; they are meant to prevent repeated rediscovery.
|
||||
|
||||
## Skill Index
|
||||
|
||||
Start with the section that best matches your need. Each entry lists the problems it solves plus key files/concepts so you know what to expect before opening it.
|
||||
|
||||
______________________________________________________________________
|
||||
### Platform Foundations
|
||||
|
||||
## Platform Foundations
|
||||
|
||||
- **[Infrastructure Overview](agent_skills/infra.md)**\
|
||||
When to read this:
|
||||
#### [Infrastructure Overview](agent_skills/infra.md)
|
||||
|
||||
- **When to read this**
|
||||
- You need to understand where a feature belongs in the architecture.
|
||||
- You’re wiring storage, Redis, vector stores, or OTEL.
|
||||
- You’re about to add CLI commands or async jobs.\
|
||||
What it covers: configuration stack (`configs/app_config.py`, remote settings), storage entry points (`extensions/ext_storage.py`, `core/file/file_manager.py`), Redis conventions (`extensions/ext_redis.py`), plugin runtime topology, vector-store factory (`core/rag/datasource/vdb/*`), observability hooks, SSRF proxy usage, and core CLI commands.
|
||||
- You’re about to add CLI commands or async jobs.
|
||||
- **What it covers**
|
||||
- Configuration stack (`configs/app_config.py`, remote settings)
|
||||
- Storage entry points (`extensions/ext_storage.py`, `core/file/file_manager.py`)
|
||||
- Redis conventions (`extensions/ext_redis.py`)
|
||||
- Plugin runtime topology
|
||||
- Vector-store factory (`core/rag/datasource/vdb/*`)
|
||||
- Observability hooks
|
||||
- SSRF proxy usage
|
||||
- Core CLI commands
|
||||
|
||||
- **[Coding Style](agent_skills/coding_style.md)**\
|
||||
When to read this:
|
||||
### Plugin & Extension Development
|
||||
|
||||
- You’re writing or reviewing backend code and need the authoritative checklist.
|
||||
- You’re unsure about Pydantic validators, SQLAlchemy session usage, or logging patterns.
|
||||
- You want the exact lint/type/test commands used in PRs.\
|
||||
Includes: Ruff & BasedPyright commands, no-annotation policy, session examples (`with Session(db.engine, ...)`), `@field_validator` usage, logging expectations, and the rule set for file size, helpers, and package management.
|
||||
|
||||
______________________________________________________________________
|
||||
|
||||
## Plugin & Extension Development
|
||||
|
||||
- **[Plugin Systems](agent_skills/plugin.md)**\
|
||||
When to read this:
|
||||
#### [Plugin Systems](agent_skills/plugin.md)
|
||||
|
||||
- **When to read this**
|
||||
- You’re building or debugging a marketplace plugin.
|
||||
- You need to know how manifests, providers, daemons, and migrations fit together.\
|
||||
What it covers: plugin manifests (`core/plugin/entities/plugin.py`), installation/upgrade flows (`services/plugin/plugin_service.py`, CLI commands), runtime adapters (`core/plugin/impl/*` for tool/model/datasource/trigger/endpoint/agent), daemon coordination (`core/plugin/entities/plugin_daemon.py`), and how provider registries surface capabilities to the rest of the platform.
|
||||
- You need to know how manifests, providers, daemons, and migrations fit together.
|
||||
- **What it covers**
|
||||
- Plugin manifests (`core/plugin/entities/plugin.py`)
|
||||
- Installation/upgrade flows (`services/plugin/plugin_service.py`, CLI commands)
|
||||
- Runtime adapters (`core/plugin/impl/*` for tool/model/datasource/trigger/endpoint/agent)
|
||||
- Daemon coordination (`core/plugin/entities/plugin_daemon.py`)
|
||||
- How provider registries surface capabilities to the rest of the platform
|
||||
|
||||
- **[Plugin OAuth](agent_skills/plugin_oauth.md)**\
|
||||
When to read this:
|
||||
#### [Plugin OAuth](agent_skills/plugin_oauth.md)
|
||||
|
||||
- **When to read this**
|
||||
- You must integrate OAuth for a plugin or datasource.
|
||||
- You’re handling credential encryption or refresh flows.\
|
||||
Topics: credential storage, encryption helpers (`core/helper/provider_encryption.py`), OAuth client bootstrap (`services/plugin/oauth_service.py`, `services/plugin/plugin_parameter_service.py`), and how console/API layers expose the flows.
|
||||
- You’re handling credential encryption or refresh flows.
|
||||
- **Topics**
|
||||
- Credential storage
|
||||
- Encryption helpers (`core/helper/provider_encryption.py`)
|
||||
- OAuth client bootstrap (`services/plugin/oauth_service.py`, `services/plugin/plugin_parameter_service.py`)
|
||||
- How console/API layers expose the flows
|
||||
|
||||
______________________________________________________________________
|
||||
### Workflow Entry & Execution
|
||||
|
||||
## Workflow Entry & Execution
|
||||
#### [Trigger Concepts](agent_skills/trigger.md)
|
||||
|
||||
- **[Trigger Concepts](agent_skills/trigger.md)**\
|
||||
When to read this:
|
||||
- **When to read this**
|
||||
- You’re debugging why a workflow didn’t start.
|
||||
- You’re adding a new trigger type or hook.
|
||||
- You need to trace async execution, draft debugging, or webhook/schedule pipelines.\
|
||||
Details: Start-node taxonomy, webhook & schedule internals (`core/workflow/nodes/trigger_*`, `services/trigger/*`), async orchestration (`services/async_workflow_service.py`, Celery queues), debug event bus, and storage/logging interactions.
|
||||
- You need to trace async execution, draft debugging, or webhook/schedule pipelines.
|
||||
- **Details**
|
||||
- Start-node taxonomy
|
||||
- Webhook & schedule internals (`core/workflow/nodes/trigger_*`, `services/trigger/*`)
|
||||
- Async orchestration (`services/async_workflow_service.py`, Celery queues)
|
||||
- Debug event bus
|
||||
- Storage/logging interactions
|
||||
|
||||
______________________________________________________________________
|
||||
## General Reminders
|
||||
|
||||
## Additional Notes for Agents
|
||||
|
||||
- All skill docs assume you follow the coding style guide—run Ruff/BasedPyright/tests listed there before submitting changes.
|
||||
- All skill docs assume you follow the coding style rules below—run the lint/type/test commands before submitting changes.
|
||||
- When you cannot find an answer in these briefs, search the codebase using the paths referenced (e.g., `core/plugin/impl/tool.py`, `services/dataset_service.py`).
|
||||
- If you run into cross-cutting concerns (tenancy, configuration, storage), check the infrastructure guide first; it links to most supporting modules.
|
||||
- Keep multi-tenancy and configuration central: everything flows through `configs.dify_config` and `tenant_id`.
|
||||
- When touching plugins or triggers, consult both the system overview and the specialised doc to ensure you adjust lifecycle, storage, and observability consistently.
|
||||
|
||||
## Coding Style
|
||||
|
||||
This is the default standard for backend code in this repo. Follow it for new code and use it as the checklist when reviewing changes.
|
||||
|
||||
### Linting & Formatting
|
||||
|
||||
- Use Ruff for formatting and linting (follow `.ruff.toml`).
|
||||
- Keep each line under 120 characters (including spaces).
|
||||
|
||||
### Naming Conventions
|
||||
|
||||
- Use `snake_case` for variables and functions.
|
||||
- Use `PascalCase` for classes.
|
||||
- Use `UPPER_CASE` for constants.
|
||||
|
||||
### Typing & Class Layout
|
||||
|
||||
- Code should usually include type annotations that match the repo’s current Python version (avoid untyped public APIs and “mystery” values).
|
||||
- Prefer modern typing forms (e.g. `list[str]`, `dict[str, int]`) and avoid `Any` unless there’s a strong reason.
|
||||
- For classes, declare member variables at the top of the class body (before `__init__`) so the class shape is obvious at a glance:
|
||||
|
||||
```python
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
class Example:
|
||||
user_id: str
|
||||
created_at: datetime
|
||||
|
||||
def __init__(self, user_id: str, created_at: datetime) -> None:
|
||||
self.user_id = user_id
|
||||
self.created_at = created_at
|
||||
```
|
||||
|
||||
### General Rules
|
||||
|
||||
- Use Pydantic v2 conventions.
|
||||
- Use `uv` for Python package management in this repo (usually with `--project api`).
|
||||
- Prefer simple functions over small “utility classes” for lightweight helpers.
|
||||
- Avoid implementing dunder methods unless it’s clearly needed and matches existing patterns.
|
||||
- Never start long-running services as part of agent work (`uv run app.py`, `flask run`, etc.); running tests is allowed.
|
||||
- Keep files below ~800 lines; split when necessary.
|
||||
- Keep code readable and explicit—avoid clever hacks.
|
||||
|
||||
### Architecture & Boundaries
|
||||
|
||||
- Mirror the layered architecture: controller → service → core/domain.
|
||||
- Reuse existing helpers in `core/`, `services/`, and `libs/` before creating new abstractions.
|
||||
- Optimise for observability: deterministic control flow, clear logging, actionable errors.
|
||||
|
||||
### Logging & Errors
|
||||
|
||||
- Never use `print`; use a module-level logger:
|
||||
- `logger = logging.getLogger(__name__)`
|
||||
- Include tenant/app/workflow identifiers in log context when relevant.
|
||||
- Raise domain-specific exceptions (`services/errors`, `core/errors`) and translate them into HTTP responses in controllers.
|
||||
- Log retryable events at `warning`, terminal failures at `error`.
|
||||
|
||||
### SQLAlchemy Patterns
|
||||
|
||||
- Models inherit from `models.base.TypeBase`; do not create ad-hoc metadata or engines.
|
||||
- Open sessions with context managers:
|
||||
|
||||
```python
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
stmt = select(Workflow).where(
|
||||
Workflow.id == workflow_id,
|
||||
Workflow.tenant_id == tenant_id,
|
||||
)
|
||||
workflow = session.execute(stmt).scalar_one_or_none()
|
||||
```
|
||||
|
||||
- Prefer SQLAlchemy expressions; avoid raw SQL unless necessary.
|
||||
- Always scope queries by `tenant_id` and protect write paths with safeguards (`FOR UPDATE`, row counts, etc.).
|
||||
- Introduce repository abstractions only for very large tables (e.g., workflow executions) or when alternative storage strategies are required.
|
||||
|
||||
### Storage & External I/O
|
||||
|
||||
- Access storage via `extensions.ext_storage.storage`.
|
||||
- Use `core.helper.ssrf_proxy` for outbound HTTP fetches.
|
||||
- Background tasks that touch storage must be idempotent, and should log relevant object identifiers.
|
||||
|
||||
### Pydantic Usage
|
||||
|
||||
- Define DTOs with Pydantic v2 models and forbid extras by default.
|
||||
- Use `@field_validator` / `@model_validator` for domain rules.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel, ConfigDict, HttpUrl, field_validator
|
||||
|
||||
|
||||
class TriggerConfig(BaseModel):
|
||||
endpoint: HttpUrl
|
||||
secret: str
|
||||
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
|
||||
@field_validator("secret")
|
||||
def ensure_secret_prefix(cls, value: str) -> str:
|
||||
if not value.startswith("dify_"):
|
||||
raise ValueError("secret must start with dify_")
|
||||
return value
|
||||
```
|
||||
|
||||
### Generics & Protocols
|
||||
|
||||
- Use `typing.Protocol` to define behavioural contracts (e.g., cache interfaces).
|
||||
- Apply generics (`TypeVar`, `Generic`) for reusable utilities like caches or providers.
|
||||
- Validate dynamic inputs at runtime when generics cannot enforce safety alone.
|
||||
|
||||
### Tooling & Checks
|
||||
|
||||
Quick checks while iterating:
|
||||
|
||||
- Format: `make format`
|
||||
- Lint (includes auto-fix): `make lint`
|
||||
- Type check: `make type-check`
|
||||
- Targeted tests: `make test TARGET_TESTS=./api/tests/<target_tests>`
|
||||
|
||||
Before opening a PR / submitting:
|
||||
|
||||
- `make lint`
|
||||
- `make type-check`
|
||||
- `make test`
|
||||
|
||||
### Controllers & Services
|
||||
|
||||
- Controllers: parse input via Pydantic, invoke services, return serialised responses; no business logic.
|
||||
- Services: coordinate repositories, providers, background tasks; keep side effects explicit.
|
||||
- Document non-obvious behaviour with concise comments.
|
||||
|
||||
### Miscellaneous
|
||||
|
||||
- Use `configs.dify_config` for configuration—never read environment variables directly.
|
||||
- Maintain tenant awareness end-to-end; `tenant_id` must flow through every layer touching shared resources.
|
||||
- Queue async work through `services/async_workflow_service`; implement tasks under `tasks/` with explicit queue selection.
|
||||
- Keep experimental scripts under `dev/`; do not ship them in production builds.
|
||||
|
||||
@@ -1,115 +0,0 @@
|
||||
## Linter
|
||||
|
||||
- Always follow `.ruff.toml`.
|
||||
- Run `uv run ruff check --fix --unsafe-fixes`.
|
||||
- Keep each line under 100 characters (including spaces).
|
||||
|
||||
## Code Style
|
||||
|
||||
- `snake_case` for variables and functions.
|
||||
- `PascalCase` for classes.
|
||||
- `UPPER_CASE` for constants.
|
||||
|
||||
## Rules
|
||||
|
||||
- Use Pydantic v2 standard.
|
||||
- Use `uv` for package management.
|
||||
- Do not override dunder methods like `__init__`, `__iadd__`, etc.
|
||||
- Never launch services (`uv run app.py`, `flask run`, etc.); running tests under `tests/` is allowed.
|
||||
- Prefer simple functions over classes for lightweight helpers.
|
||||
- Keep files below 800 lines; split when necessary.
|
||||
- Keep code readable—no clever hacks.
|
||||
- Never use `print`; log with `logger = logging.getLogger(__name__)`.
|
||||
|
||||
## Guiding Principles
|
||||
|
||||
- Mirror the project’s layered architecture: controller → service → core/domain.
|
||||
- Reuse existing helpers in `core/`, `services/`, and `libs/` before creating new abstractions.
|
||||
- Optimise for observability: deterministic control flow, clear logging, actionable errors.
|
||||
|
||||
## SQLAlchemy Patterns
|
||||
|
||||
- Models inherit from `models.base.Base`; never create ad-hoc metadata or engines.
|
||||
|
||||
- Open sessions with context managers:
|
||||
|
||||
```python
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
with Session(db.engine, expire_on_commit=False) as session:
|
||||
stmt = select(Workflow).where(
|
||||
Workflow.id == workflow_id,
|
||||
Workflow.tenant_id == tenant_id,
|
||||
)
|
||||
workflow = session.execute(stmt).scalar_one_or_none()
|
||||
```
|
||||
|
||||
- Use SQLAlchemy expressions; avoid raw SQL unless necessary.
|
||||
|
||||
- Introduce repository abstractions only for very large tables (e.g., workflow executions) to support alternative storage strategies.
|
||||
|
||||
- Always scope queries by `tenant_id` and protect write paths with safeguards (`FOR UPDATE`, row counts, etc.).
|
||||
|
||||
## Storage & External IO
|
||||
|
||||
- Access storage via `extensions.ext_storage.storage`.
|
||||
- Use `core.helper.ssrf_proxy` for outbound HTTP fetches.
|
||||
- Background tasks that touch storage must be idempotent and log the relevant object identifiers.
|
||||
|
||||
## Pydantic Usage
|
||||
|
||||
- Define DTOs with Pydantic v2 models and forbid extras by default.
|
||||
|
||||
- Use `@field_validator` / `@model_validator` for domain rules.
|
||||
|
||||
- Example:
|
||||
|
||||
```python
|
||||
from pydantic import BaseModel, ConfigDict, HttpUrl, field_validator
|
||||
|
||||
class TriggerConfig(BaseModel):
|
||||
endpoint: HttpUrl
|
||||
secret: str
|
||||
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
|
||||
@field_validator("secret")
|
||||
def ensure_secret_prefix(cls, value: str) -> str:
|
||||
if not value.startswith("dify_"):
|
||||
raise ValueError("secret must start with dify_")
|
||||
return value
|
||||
```
|
||||
|
||||
## Generics & Protocols
|
||||
|
||||
- Use `typing.Protocol` to define behavioural contracts (e.g., cache interfaces).
|
||||
- Apply generics (`TypeVar`, `Generic`) for reusable utilities like caches or providers.
|
||||
- Validate dynamic inputs at runtime when generics cannot enforce safety alone.
|
||||
|
||||
## Error Handling & Logging
|
||||
|
||||
- Raise domain-specific exceptions (`services/errors`, `core/errors`) and translate to HTTP responses in controllers.
|
||||
- Declare `logger = logging.getLogger(__name__)` at module top.
|
||||
- Include tenant/app/workflow identifiers in log context.
|
||||
- Log retryable events at `warning`, terminal failures at `error`.
|
||||
|
||||
## Tooling & Checks
|
||||
|
||||
- Format/lint: `uv run --project api --dev ruff format ./api` and `uv run --project api --dev ruff check --fix --unsafe-fixes ./api`.
|
||||
- Type checks: `uv run --directory api --dev basedpyright`.
|
||||
- Tests: `uv run --project api --dev dev/pytest/pytest_unit_tests.sh`.
|
||||
- Run all of the above before submitting your work.
|
||||
|
||||
## Controllers & Services
|
||||
|
||||
- Controllers: parse input via Pydantic, invoke services, return serialised responses; no business logic.
|
||||
- Services: coordinate repositories, providers, background tasks; keep side effects explicit.
|
||||
- Avoid repositories unless necessary; direct SQLAlchemy usage is preferred for typical tables.
|
||||
- Document non-obvious behaviour with concise comments.
|
||||
|
||||
## Miscellaneous
|
||||
|
||||
- Use `configs.dify_config` for configuration—never read environment variables directly.
|
||||
- Maintain tenant awareness end-to-end; `tenant_id` must flow through every layer touching shared resources.
|
||||
- Queue async work through `services/async_workflow_service`; implement tasks under `tasks/` with explicit queue selection.
|
||||
- Keep experimental scripts under `dev/`; do not ship them in production builds.
|
||||
154
api/commands.py
154
api/commands.py
@@ -1,7 +1,9 @@
|
||||
import base64
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import secrets
|
||||
import time
|
||||
from typing import Any
|
||||
|
||||
import click
|
||||
@@ -34,7 +36,7 @@ from libs.rsa import generate_key_pair
|
||||
from models import Tenant
|
||||
from models.dataset import Dataset, DatasetCollectionBinding, DatasetMetadata, DatasetMetadataBinding, DocumentSegment
|
||||
from models.dataset import Document as DatasetDocument
|
||||
from models.model import Account, App, AppAnnotationSetting, AppMode, Conversation, MessageAnnotation, UploadFile
|
||||
from models.model import App, AppAnnotationSetting, AppMode, Conversation, MessageAnnotation, UploadFile
|
||||
from models.oauth import DatasourceOauthParamConfig, DatasourceProvider
|
||||
from models.provider import Provider, ProviderModel
|
||||
from models.provider_ids import DatasourceProviderID, ToolProviderID
|
||||
@@ -45,6 +47,9 @@ from services.clear_free_plan_tenant_expired_logs import ClearFreePlanTenantExpi
|
||||
from services.plugin.data_migration import PluginDataMigration
|
||||
from services.plugin.plugin_migration import PluginMigration
|
||||
from services.plugin.plugin_service import PluginService
|
||||
from services.retention.conversation.messages_clean_policy import create_message_clean_policy
|
||||
from services.retention.conversation.messages_clean_service import MessagesCleanService
|
||||
from services.retention.workflow_run.clear_free_plan_expired_workflow_run_logs import WorkflowRunCleanup
|
||||
from tasks.remove_app_and_related_data_task import delete_draft_variables_batch
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -62,8 +67,10 @@ def reset_password(email, new_password, password_confirm):
|
||||
if str(new_password).strip() != str(password_confirm).strip():
|
||||
click.echo(click.style("Passwords do not match.", fg="red"))
|
||||
return
|
||||
normalized_email = email.strip().lower()
|
||||
|
||||
with sessionmaker(db.engine, expire_on_commit=False).begin() as session:
|
||||
account = session.query(Account).where(Account.email == email).one_or_none()
|
||||
account = AccountService.get_account_by_email_with_case_fallback(email.strip(), session=session)
|
||||
|
||||
if not account:
|
||||
click.echo(click.style(f"Account not found for email: {email}", fg="red"))
|
||||
@@ -84,7 +91,7 @@ def reset_password(email, new_password, password_confirm):
|
||||
base64_password_hashed = base64.b64encode(password_hashed).decode()
|
||||
account.password = base64_password_hashed
|
||||
account.password_salt = base64_salt
|
||||
AccountService.reset_login_error_rate_limit(email)
|
||||
AccountService.reset_login_error_rate_limit(normalized_email)
|
||||
click.echo(click.style("Password reset successfully.", fg="green"))
|
||||
|
||||
|
||||
@@ -100,20 +107,22 @@ def reset_email(email, new_email, email_confirm):
|
||||
if str(new_email).strip() != str(email_confirm).strip():
|
||||
click.echo(click.style("New emails do not match.", fg="red"))
|
||||
return
|
||||
normalized_new_email = new_email.strip().lower()
|
||||
|
||||
with sessionmaker(db.engine, expire_on_commit=False).begin() as session:
|
||||
account = session.query(Account).where(Account.email == email).one_or_none()
|
||||
account = AccountService.get_account_by_email_with_case_fallback(email.strip(), session=session)
|
||||
|
||||
if not account:
|
||||
click.echo(click.style(f"Account not found for email: {email}", fg="red"))
|
||||
return
|
||||
|
||||
try:
|
||||
email_validate(new_email)
|
||||
email_validate(normalized_new_email)
|
||||
except:
|
||||
click.echo(click.style(f"Invalid email: {new_email}", fg="red"))
|
||||
return
|
||||
|
||||
account.email = new_email
|
||||
account.email = normalized_new_email
|
||||
click.echo(click.style("Email updated successfully.", fg="green"))
|
||||
|
||||
|
||||
@@ -658,7 +667,7 @@ def create_tenant(email: str, language: str | None = None, name: str | None = No
|
||||
return
|
||||
|
||||
# Create account
|
||||
email = email.strip()
|
||||
email = email.strip().lower()
|
||||
|
||||
if "@" not in email:
|
||||
click.echo(click.style("Invalid email address.", fg="red"))
|
||||
@@ -852,6 +861,61 @@ def clear_free_plan_tenant_expired_logs(days: int, batch: int, tenant_ids: list[
|
||||
click.echo(click.style("Clear free plan tenant expired logs completed.", fg="green"))
|
||||
|
||||
|
||||
@click.command("clean-workflow-runs", help="Clean expired workflow runs and related data for free tenants.")
|
||||
@click.option("--days", default=30, show_default=True, help="Delete workflow runs created before N days ago.")
|
||||
@click.option("--batch-size", default=200, show_default=True, help="Batch size for selecting workflow runs.")
|
||||
@click.option(
|
||||
"--start-from",
|
||||
type=click.DateTime(formats=["%Y-%m-%d", "%Y-%m-%dT%H:%M:%S"]),
|
||||
default=None,
|
||||
help="Optional lower bound (inclusive) for created_at; must be paired with --end-before.",
|
||||
)
|
||||
@click.option(
|
||||
"--end-before",
|
||||
type=click.DateTime(formats=["%Y-%m-%d", "%Y-%m-%dT%H:%M:%S"]),
|
||||
default=None,
|
||||
help="Optional upper bound (exclusive) for created_at; must be paired with --start-from.",
|
||||
)
|
||||
@click.option(
|
||||
"--dry-run",
|
||||
is_flag=True,
|
||||
help="Preview cleanup results without deleting any workflow run data.",
|
||||
)
|
||||
def clean_workflow_runs(
|
||||
days: int,
|
||||
batch_size: int,
|
||||
start_from: datetime.datetime | None,
|
||||
end_before: datetime.datetime | None,
|
||||
dry_run: bool,
|
||||
):
|
||||
"""
|
||||
Clean workflow runs and related workflow data for free tenants.
|
||||
"""
|
||||
if (start_from is None) ^ (end_before is None):
|
||||
raise click.UsageError("--start-from and --end-before must be provided together.")
|
||||
|
||||
start_time = datetime.datetime.now(datetime.UTC)
|
||||
click.echo(click.style(f"Starting workflow run cleanup at {start_time.isoformat()}.", fg="white"))
|
||||
|
||||
WorkflowRunCleanup(
|
||||
days=days,
|
||||
batch_size=batch_size,
|
||||
start_from=start_from,
|
||||
end_before=end_before,
|
||||
dry_run=dry_run,
|
||||
).run()
|
||||
|
||||
end_time = datetime.datetime.now(datetime.UTC)
|
||||
elapsed = end_time - start_time
|
||||
click.echo(
|
||||
click.style(
|
||||
f"Workflow run cleanup completed. start={start_time.isoformat()} "
|
||||
f"end={end_time.isoformat()} duration={elapsed}",
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
@click.option("-f", "--force", is_flag=True, help="Skip user confirmation and force the command to execute.")
|
||||
@click.command("clear-orphaned-file-records", help="Clear orphaned file records.")
|
||||
def clear_orphaned_file_records(force: bool):
|
||||
@@ -2111,3 +2175,79 @@ def migrate_oss(
|
||||
except Exception as e:
|
||||
db.session.rollback()
|
||||
click.echo(click.style(f"Failed to update DB storage_type: {str(e)}", fg="red"))
|
||||
|
||||
|
||||
@click.command("clean-expired-messages", help="Clean expired messages.")
|
||||
@click.option(
|
||||
"--start-from",
|
||||
type=click.DateTime(formats=["%Y-%m-%d", "%Y-%m-%dT%H:%M:%S"]),
|
||||
required=True,
|
||||
help="Lower bound (inclusive) for created_at.",
|
||||
)
|
||||
@click.option(
|
||||
"--end-before",
|
||||
type=click.DateTime(formats=["%Y-%m-%d", "%Y-%m-%dT%H:%M:%S"]),
|
||||
required=True,
|
||||
help="Upper bound (exclusive) for created_at.",
|
||||
)
|
||||
@click.option("--batch-size", default=1000, show_default=True, help="Batch size for selecting messages.")
|
||||
@click.option(
|
||||
"--graceful-period",
|
||||
default=21,
|
||||
show_default=True,
|
||||
help="Graceful period in days after subscription expiration, will be ignored when billing is disabled.",
|
||||
)
|
||||
@click.option("--dry-run", is_flag=True, default=False, help="Show messages logs would be cleaned without deleting")
|
||||
def clean_expired_messages(
|
||||
batch_size: int,
|
||||
graceful_period: int,
|
||||
start_from: datetime.datetime,
|
||||
end_before: datetime.datetime,
|
||||
dry_run: bool,
|
||||
):
|
||||
"""
|
||||
Clean expired messages and related data for tenants based on clean policy.
|
||||
"""
|
||||
click.echo(click.style("clean_messages: start clean messages.", fg="green"))
|
||||
|
||||
start_at = time.perf_counter()
|
||||
|
||||
try:
|
||||
# Create policy based on billing configuration
|
||||
# NOTE: graceful_period will be ignored when billing is disabled.
|
||||
policy = create_message_clean_policy(graceful_period_days=graceful_period)
|
||||
|
||||
# Create and run the cleanup service
|
||||
service = MessagesCleanService.from_time_range(
|
||||
policy=policy,
|
||||
start_from=start_from,
|
||||
end_before=end_before,
|
||||
batch_size=batch_size,
|
||||
dry_run=dry_run,
|
||||
)
|
||||
stats = service.run()
|
||||
|
||||
end_at = time.perf_counter()
|
||||
click.echo(
|
||||
click.style(
|
||||
f"clean_messages: completed successfully\n"
|
||||
f" - Latency: {end_at - start_at:.2f}s\n"
|
||||
f" - Batches processed: {stats['batches']}\n"
|
||||
f" - Total messages scanned: {stats['total_messages']}\n"
|
||||
f" - Messages filtered: {stats['filtered_messages']}\n"
|
||||
f" - Messages deleted: {stats['total_deleted']}",
|
||||
fg="green",
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
end_at = time.perf_counter()
|
||||
logger.exception("clean_messages failed")
|
||||
click.echo(
|
||||
click.style(
|
||||
f"clean_messages: failed after {end_at - start_at:.2f}s - {str(e)}",
|
||||
fg="red",
|
||||
)
|
||||
)
|
||||
raise
|
||||
|
||||
click.echo(click.style("messages cleanup completed.", fg="green"))
|
||||
|
||||
@@ -949,6 +949,12 @@ class MailConfig(BaseSettings):
|
||||
default=False,
|
||||
)
|
||||
|
||||
SMTP_LOCAL_HOSTNAME: str | None = Field(
|
||||
description="Override the local hostname used in SMTP HELO/EHLO. "
|
||||
"Useful behind NAT or when the default hostname causes rejections.",
|
||||
default=None,
|
||||
)
|
||||
|
||||
EMAIL_SEND_IP_LIMIT_PER_MINUTE: PositiveInt = Field(
|
||||
description="Maximum number of emails allowed to be sent from the same IP address in a minute",
|
||||
default=50,
|
||||
@@ -1101,6 +1107,10 @@ class CeleryScheduleTasksConfig(BaseSettings):
|
||||
description="Enable clean messages task",
|
||||
default=False,
|
||||
)
|
||||
ENABLE_WORKFLOW_RUN_CLEANUP_TASK: bool = Field(
|
||||
description="Enable scheduled workflow run cleanup task",
|
||||
default=False,
|
||||
)
|
||||
ENABLE_MAIL_CLEAN_DOCUMENT_NOTIFY_TASK: bool = Field(
|
||||
description="Enable mail clean document notify task",
|
||||
default=False,
|
||||
|
||||
@@ -8,6 +8,11 @@ class HostedCreditConfig(BaseSettings):
|
||||
default="",
|
||||
)
|
||||
|
||||
HOSTED_POOL_CREDITS: int = Field(
|
||||
description="Pool credits for hosted service",
|
||||
default=200,
|
||||
)
|
||||
|
||||
def get_model_credits(self, model_name: str) -> int:
|
||||
"""
|
||||
Get credit value for a specific model name.
|
||||
@@ -60,19 +65,46 @@ class HostedOpenAiConfig(BaseSettings):
|
||||
|
||||
HOSTED_OPENAI_TRIAL_MODELS: str = Field(
|
||||
description="Comma-separated list of available models for trial access",
|
||||
default="gpt-3.5-turbo,"
|
||||
"gpt-3.5-turbo-1106,"
|
||||
"gpt-3.5-turbo-instruct,"
|
||||
default="gpt-4,"
|
||||
"gpt-4-turbo-preview,"
|
||||
"gpt-4-turbo-2024-04-09,"
|
||||
"gpt-4-1106-preview,"
|
||||
"gpt-4-0125-preview,"
|
||||
"gpt-4-turbo,"
|
||||
"gpt-4.1,"
|
||||
"gpt-4.1-2025-04-14,"
|
||||
"gpt-4.1-mini,"
|
||||
"gpt-4.1-mini-2025-04-14,"
|
||||
"gpt-4.1-nano,"
|
||||
"gpt-4.1-nano-2025-04-14,"
|
||||
"gpt-3.5-turbo,"
|
||||
"gpt-3.5-turbo-16k,"
|
||||
"gpt-3.5-turbo-16k-0613,"
|
||||
"gpt-3.5-turbo-1106,"
|
||||
"gpt-3.5-turbo-0613,"
|
||||
"gpt-3.5-turbo-0125,"
|
||||
"text-davinci-003",
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_QUOTA_LIMIT: NonNegativeInt = Field(
|
||||
description="Quota limit for hosted OpenAI service usage",
|
||||
default=200,
|
||||
"gpt-3.5-turbo-instruct,"
|
||||
"text-davinci-003,"
|
||||
"chatgpt-4o-latest,"
|
||||
"gpt-4o,"
|
||||
"gpt-4o-2024-05-13,"
|
||||
"gpt-4o-2024-08-06,"
|
||||
"gpt-4o-2024-11-20,"
|
||||
"gpt-4o-audio-preview,"
|
||||
"gpt-4o-audio-preview-2025-06-03,"
|
||||
"gpt-4o-mini,"
|
||||
"gpt-4o-mini-2024-07-18,"
|
||||
"o3-mini,"
|
||||
"o3-mini-2025-01-31,"
|
||||
"gpt-5-mini-2025-08-07,"
|
||||
"gpt-5-mini,"
|
||||
"o4-mini,"
|
||||
"o4-mini-2025-04-16,"
|
||||
"gpt-5-chat-latest,"
|
||||
"gpt-5,"
|
||||
"gpt-5-2025-08-07,"
|
||||
"gpt-5-nano,"
|
||||
"gpt-5-nano-2025-08-07",
|
||||
)
|
||||
|
||||
HOSTED_OPENAI_PAID_ENABLED: bool = Field(
|
||||
@@ -87,6 +119,13 @@ class HostedOpenAiConfig(BaseSettings):
|
||||
"gpt-4-turbo-2024-04-09,"
|
||||
"gpt-4-1106-preview,"
|
||||
"gpt-4-0125-preview,"
|
||||
"gpt-4-turbo,"
|
||||
"gpt-4.1,"
|
||||
"gpt-4.1-2025-04-14,"
|
||||
"gpt-4.1-mini,"
|
||||
"gpt-4.1-mini-2025-04-14,"
|
||||
"gpt-4.1-nano,"
|
||||
"gpt-4.1-nano-2025-04-14,"
|
||||
"gpt-3.5-turbo,"
|
||||
"gpt-3.5-turbo-16k,"
|
||||
"gpt-3.5-turbo-16k-0613,"
|
||||
@@ -94,7 +133,150 @@ class HostedOpenAiConfig(BaseSettings):
|
||||
"gpt-3.5-turbo-0613,"
|
||||
"gpt-3.5-turbo-0125,"
|
||||
"gpt-3.5-turbo-instruct,"
|
||||
"text-davinci-003",
|
||||
"text-davinci-003,"
|
||||
"chatgpt-4o-latest,"
|
||||
"gpt-4o,"
|
||||
"gpt-4o-2024-05-13,"
|
||||
"gpt-4o-2024-08-06,"
|
||||
"gpt-4o-2024-11-20,"
|
||||
"gpt-4o-audio-preview,"
|
||||
"gpt-4o-audio-preview-2025-06-03,"
|
||||
"gpt-4o-mini,"
|
||||
"gpt-4o-mini-2024-07-18,"
|
||||
"o3-mini,"
|
||||
"o3-mini-2025-01-31,"
|
||||
"gpt-5-mini-2025-08-07,"
|
||||
"gpt-5-mini,"
|
||||
"o4-mini,"
|
||||
"o4-mini-2025-04-16,"
|
||||
"gpt-5-chat-latest,"
|
||||
"gpt-5,"
|
||||
"gpt-5-2025-08-07,"
|
||||
"gpt-5-nano,"
|
||||
"gpt-5-nano-2025-08-07",
|
||||
)
|
||||
|
||||
|
||||
class HostedGeminiConfig(BaseSettings):
|
||||
"""
|
||||
Configuration for fetching Gemini service
|
||||
"""
|
||||
|
||||
HOSTED_GEMINI_API_KEY: str | None = Field(
|
||||
description="API key for hosted Gemini service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_GEMINI_API_BASE: str | None = Field(
|
||||
description="Base URL for hosted Gemini API",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_GEMINI_API_ORGANIZATION: str | None = Field(
|
||||
description="Organization ID for hosted Gemini service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_GEMINI_TRIAL_ENABLED: bool = Field(
|
||||
description="Enable trial access to hosted Gemini service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_GEMINI_TRIAL_MODELS: str = Field(
|
||||
description="Comma-separated list of available models for trial access",
|
||||
default="gemini-2.5-flash,gemini-2.0-flash,gemini-2.0-flash-lite,",
|
||||
)
|
||||
|
||||
HOSTED_GEMINI_PAID_ENABLED: bool = Field(
|
||||
description="Enable paid access to hosted gemini service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_GEMINI_PAID_MODELS: str = Field(
|
||||
description="Comma-separated list of available models for paid access",
|
||||
default="gemini-2.5-flash,gemini-2.0-flash,gemini-2.0-flash-lite,",
|
||||
)
|
||||
|
||||
|
||||
class HostedXAIConfig(BaseSettings):
|
||||
"""
|
||||
Configuration for fetching XAI service
|
||||
"""
|
||||
|
||||
HOSTED_XAI_API_KEY: str | None = Field(
|
||||
description="API key for hosted XAI service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_XAI_API_BASE: str | None = Field(
|
||||
description="Base URL for hosted XAI API",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_XAI_API_ORGANIZATION: str | None = Field(
|
||||
description="Organization ID for hosted XAI service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_XAI_TRIAL_ENABLED: bool = Field(
|
||||
description="Enable trial access to hosted XAI service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_XAI_TRIAL_MODELS: str = Field(
|
||||
description="Comma-separated list of available models for trial access",
|
||||
default="grok-3,grok-3-mini,grok-3-mini-fast",
|
||||
)
|
||||
|
||||
HOSTED_XAI_PAID_ENABLED: bool = Field(
|
||||
description="Enable paid access to hosted XAI service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_XAI_PAID_MODELS: str = Field(
|
||||
description="Comma-separated list of available models for paid access",
|
||||
default="grok-3,grok-3-mini,grok-3-mini-fast",
|
||||
)
|
||||
|
||||
|
||||
class HostedDeepseekConfig(BaseSettings):
|
||||
"""
|
||||
Configuration for fetching Deepseek service
|
||||
"""
|
||||
|
||||
HOSTED_DEEPSEEK_API_KEY: str | None = Field(
|
||||
description="API key for hosted Deepseek service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_DEEPSEEK_API_BASE: str | None = Field(
|
||||
description="Base URL for hosted Deepseek API",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_DEEPSEEK_API_ORGANIZATION: str | None = Field(
|
||||
description="Organization ID for hosted Deepseek service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_DEEPSEEK_TRIAL_ENABLED: bool = Field(
|
||||
description="Enable trial access to hosted Deepseek service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_DEEPSEEK_TRIAL_MODELS: str = Field(
|
||||
description="Comma-separated list of available models for trial access",
|
||||
default="deepseek-chat,deepseek-reasoner",
|
||||
)
|
||||
|
||||
HOSTED_DEEPSEEK_PAID_ENABLED: bool = Field(
|
||||
description="Enable paid access to hosted Deepseek service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_DEEPSEEK_PAID_MODELS: str = Field(
|
||||
description="Comma-separated list of available models for paid access",
|
||||
default="deepseek-chat,deepseek-reasoner",
|
||||
)
|
||||
|
||||
|
||||
@@ -144,16 +326,66 @@ class HostedAnthropicConfig(BaseSettings):
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_ANTHROPIC_QUOTA_LIMIT: NonNegativeInt = Field(
|
||||
description="Quota limit for hosted Anthropic service usage",
|
||||
default=600000,
|
||||
)
|
||||
|
||||
HOSTED_ANTHROPIC_PAID_ENABLED: bool = Field(
|
||||
description="Enable paid access to hosted Anthropic service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_ANTHROPIC_TRIAL_MODELS: str = Field(
|
||||
description="Comma-separated list of available models for paid access",
|
||||
default="claude-opus-4-20250514,"
|
||||
"claude-sonnet-4-20250514,"
|
||||
"claude-3-5-haiku-20241022,"
|
||||
"claude-3-opus-20240229,"
|
||||
"claude-3-7-sonnet-20250219,"
|
||||
"claude-3-haiku-20240307",
|
||||
)
|
||||
HOSTED_ANTHROPIC_PAID_MODELS: str = Field(
|
||||
description="Comma-separated list of available models for paid access",
|
||||
default="claude-opus-4-20250514,"
|
||||
"claude-sonnet-4-20250514,"
|
||||
"claude-3-5-haiku-20241022,"
|
||||
"claude-3-opus-20240229,"
|
||||
"claude-3-7-sonnet-20250219,"
|
||||
"claude-3-haiku-20240307",
|
||||
)
|
||||
|
||||
|
||||
class HostedTongyiConfig(BaseSettings):
|
||||
"""
|
||||
Configuration for hosted Tongyi service
|
||||
"""
|
||||
|
||||
HOSTED_TONGYI_API_KEY: str | None = Field(
|
||||
description="API key for hosted Tongyi service",
|
||||
default=None,
|
||||
)
|
||||
|
||||
HOSTED_TONGYI_USE_INTERNATIONAL_ENDPOINT: bool = Field(
|
||||
description="Use international endpoint for hosted Tongyi service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_TONGYI_TRIAL_ENABLED: bool = Field(
|
||||
description="Enable trial access to hosted Tongyi service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_TONGYI_PAID_ENABLED: bool = Field(
|
||||
description="Enable paid access to hosted Anthropic service",
|
||||
default=False,
|
||||
)
|
||||
|
||||
HOSTED_TONGYI_TRIAL_MODELS: str = Field(
|
||||
description="Comma-separated list of available models for trial access",
|
||||
default="",
|
||||
)
|
||||
|
||||
HOSTED_TONGYI_PAID_MODELS: str = Field(
|
||||
description="Comma-separated list of available models for paid access",
|
||||
default="",
|
||||
)
|
||||
|
||||
|
||||
class HostedMinmaxConfig(BaseSettings):
|
||||
"""
|
||||
@@ -246,9 +478,13 @@ class HostedServiceConfig(
|
||||
HostedOpenAiConfig,
|
||||
HostedSparkConfig,
|
||||
HostedZhipuAIConfig,
|
||||
HostedTongyiConfig,
|
||||
# moderation
|
||||
HostedModerationConfig,
|
||||
# credit config
|
||||
HostedCreditConfig,
|
||||
HostedGeminiConfig,
|
||||
HostedXAIConfig,
|
||||
HostedDeepseekConfig,
|
||||
):
|
||||
pass
|
||||
|
||||
@@ -4,7 +4,7 @@ from pydantic_settings import BaseSettings
|
||||
|
||||
class VolcengineTOSStorageConfig(BaseSettings):
|
||||
"""
|
||||
Configuration settings for Volcengine Tinder Object Storage (TOS)
|
||||
Configuration settings for Volcengine Torch Object Storage (TOS)
|
||||
"""
|
||||
|
||||
VOLCENGINE_TOS_BUCKET_NAME: str | None = Field(
|
||||
|
||||
@@ -592,9 +592,12 @@ def _get_conversation(app_model, conversation_id):
|
||||
if not conversation:
|
||||
raise NotFound("Conversation Not Exists.")
|
||||
|
||||
if not conversation.read_at:
|
||||
conversation.read_at = naive_utc_now()
|
||||
conversation.read_account_id = current_user.id
|
||||
db.session.commit()
|
||||
db.session.execute(
|
||||
sa.update(Conversation)
|
||||
.where(Conversation.id == conversation_id, Conversation.read_at.is_(None))
|
||||
.values(read_at=naive_utc_now(), read_account_id=current_user.id)
|
||||
)
|
||||
db.session.commit()
|
||||
db.session.refresh(conversation)
|
||||
|
||||
return conversation
|
||||
|
||||
@@ -202,7 +202,6 @@ message_detail_model = console_ns.model(
|
||||
"status": fields.String,
|
||||
"error": fields.String,
|
||||
"parent_message_id": fields.String,
|
||||
"generation_detail": fields.Raw,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@@ -63,10 +63,9 @@ class ActivateCheckApi(Resource):
|
||||
args = ActivateCheckQuery.model_validate(request.args.to_dict(flat=True)) # type: ignore
|
||||
|
||||
workspaceId = args.workspace_id
|
||||
reg_email = args.email
|
||||
token = args.token
|
||||
|
||||
invitation = RegisterService.get_invitation_if_token_valid(workspaceId, reg_email, token)
|
||||
invitation = RegisterService.get_invitation_with_case_fallback(workspaceId, args.email, token)
|
||||
if invitation:
|
||||
data = invitation.get("data", {})
|
||||
tenant = invitation.get("tenant", None)
|
||||
@@ -100,11 +99,12 @@ class ActivateApi(Resource):
|
||||
def post(self):
|
||||
args = ActivatePayload.model_validate(console_ns.payload)
|
||||
|
||||
invitation = RegisterService.get_invitation_if_token_valid(args.workspace_id, args.email, args.token)
|
||||
normalized_request_email = args.email.lower() if args.email else None
|
||||
invitation = RegisterService.get_invitation_with_case_fallback(args.workspace_id, args.email, args.token)
|
||||
if invitation is None:
|
||||
raise AlreadyActivateError()
|
||||
|
||||
RegisterService.revoke_token(args.workspace_id, args.email, args.token)
|
||||
RegisterService.revoke_token(args.workspace_id, normalized_request_email, args.token)
|
||||
|
||||
account = invitation["account"]
|
||||
account.name = args.name
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
from flask import request
|
||||
from flask_restx import Resource
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from configs import dify_config
|
||||
@@ -62,6 +61,7 @@ class EmailRegisterSendEmailApi(Resource):
|
||||
@email_register_enabled
|
||||
def post(self):
|
||||
args = EmailRegisterSendPayload.model_validate(console_ns.payload)
|
||||
normalized_email = args.email.lower()
|
||||
|
||||
ip_address = extract_remote_ip(request)
|
||||
if AccountService.is_email_send_ip_limit(ip_address):
|
||||
@@ -70,13 +70,12 @@ class EmailRegisterSendEmailApi(Resource):
|
||||
if args.language in languages:
|
||||
language = args.language
|
||||
|
||||
if dify_config.BILLING_ENABLED and BillingService.is_email_in_freeze(args.email):
|
||||
if dify_config.BILLING_ENABLED and BillingService.is_email_in_freeze(normalized_email):
|
||||
raise AccountInFreezeError()
|
||||
|
||||
with Session(db.engine) as session:
|
||||
account = session.execute(select(Account).filter_by(email=args.email)).scalar_one_or_none()
|
||||
token = None
|
||||
token = AccountService.send_email_register_email(email=args.email, account=account, language=language)
|
||||
account = AccountService.get_account_by_email_with_case_fallback(args.email, session=session)
|
||||
token = AccountService.send_email_register_email(email=normalized_email, account=account, language=language)
|
||||
return {"result": "success", "data": token}
|
||||
|
||||
|
||||
@@ -88,9 +87,9 @@ class EmailRegisterCheckApi(Resource):
|
||||
def post(self):
|
||||
args = EmailRegisterValidityPayload.model_validate(console_ns.payload)
|
||||
|
||||
user_email = args.email
|
||||
user_email = args.email.lower()
|
||||
|
||||
is_email_register_error_rate_limit = AccountService.is_email_register_error_rate_limit(args.email)
|
||||
is_email_register_error_rate_limit = AccountService.is_email_register_error_rate_limit(user_email)
|
||||
if is_email_register_error_rate_limit:
|
||||
raise EmailRegisterLimitError()
|
||||
|
||||
@@ -98,11 +97,14 @@ class EmailRegisterCheckApi(Resource):
|
||||
if token_data is None:
|
||||
raise InvalidTokenError()
|
||||
|
||||
if user_email != token_data.get("email"):
|
||||
token_email = token_data.get("email")
|
||||
normalized_token_email = token_email.lower() if isinstance(token_email, str) else token_email
|
||||
|
||||
if user_email != normalized_token_email:
|
||||
raise InvalidEmailError()
|
||||
|
||||
if args.code != token_data.get("code"):
|
||||
AccountService.add_email_register_error_rate_limit(args.email)
|
||||
AccountService.add_email_register_error_rate_limit(user_email)
|
||||
raise EmailCodeError()
|
||||
|
||||
# Verified, revoke the first token
|
||||
@@ -113,8 +115,8 @@ class EmailRegisterCheckApi(Resource):
|
||||
user_email, code=args.code, additional_data={"phase": "register"}
|
||||
)
|
||||
|
||||
AccountService.reset_email_register_error_rate_limit(args.email)
|
||||
return {"is_valid": True, "email": token_data.get("email"), "token": new_token}
|
||||
AccountService.reset_email_register_error_rate_limit(user_email)
|
||||
return {"is_valid": True, "email": normalized_token_email, "token": new_token}
|
||||
|
||||
|
||||
@console_ns.route("/email-register")
|
||||
@@ -141,22 +143,23 @@ class EmailRegisterResetApi(Resource):
|
||||
AccountService.revoke_email_register_token(args.token)
|
||||
|
||||
email = register_data.get("email", "")
|
||||
normalized_email = email.lower()
|
||||
|
||||
with Session(db.engine) as session:
|
||||
account = session.execute(select(Account).filter_by(email=email)).scalar_one_or_none()
|
||||
account = AccountService.get_account_by_email_with_case_fallback(email, session=session)
|
||||
|
||||
if account:
|
||||
raise EmailAlreadyInUseError()
|
||||
else:
|
||||
account = self._create_new_account(email, args.password_confirm)
|
||||
account = self._create_new_account(normalized_email, args.password_confirm)
|
||||
if not account:
|
||||
raise AccountNotFoundError()
|
||||
token_pair = AccountService.login(account=account, ip_address=extract_remote_ip(request))
|
||||
AccountService.reset_login_error_rate_limit(email)
|
||||
AccountService.reset_login_error_rate_limit(normalized_email)
|
||||
|
||||
return {"result": "success", "data": token_pair.model_dump()}
|
||||
|
||||
def _create_new_account(self, email, password) -> Account | None:
|
||||
def _create_new_account(self, email: str, password: str) -> Account | None:
|
||||
# Create new account if allowed
|
||||
account = None
|
||||
try:
|
||||
|
||||
@@ -4,7 +4,6 @@ import secrets
|
||||
from flask import request
|
||||
from flask_restx import Resource, fields
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from controllers.console import console_ns
|
||||
@@ -21,7 +20,6 @@ from events.tenant_event import tenant_was_created
|
||||
from extensions.ext_database import db
|
||||
from libs.helper import EmailStr, extract_remote_ip
|
||||
from libs.password import hash_password, valid_password
|
||||
from models import Account
|
||||
from services.account_service import AccountService, TenantService
|
||||
from services.feature_service import FeatureService
|
||||
|
||||
@@ -76,6 +74,7 @@ class ForgotPasswordSendEmailApi(Resource):
|
||||
@email_password_login_enabled
|
||||
def post(self):
|
||||
args = ForgotPasswordSendPayload.model_validate(console_ns.payload)
|
||||
normalized_email = args.email.lower()
|
||||
|
||||
ip_address = extract_remote_ip(request)
|
||||
if AccountService.is_email_send_ip_limit(ip_address):
|
||||
@@ -87,11 +86,11 @@ class ForgotPasswordSendEmailApi(Resource):
|
||||
language = "en-US"
|
||||
|
||||
with Session(db.engine) as session:
|
||||
account = session.execute(select(Account).filter_by(email=args.email)).scalar_one_or_none()
|
||||
account = AccountService.get_account_by_email_with_case_fallback(args.email, session=session)
|
||||
|
||||
token = AccountService.send_reset_password_email(
|
||||
account=account,
|
||||
email=args.email,
|
||||
email=normalized_email,
|
||||
language=language,
|
||||
is_allow_register=FeatureService.get_system_features().is_allow_register,
|
||||
)
|
||||
@@ -122,9 +121,9 @@ class ForgotPasswordCheckApi(Resource):
|
||||
def post(self):
|
||||
args = ForgotPasswordCheckPayload.model_validate(console_ns.payload)
|
||||
|
||||
user_email = args.email
|
||||
user_email = args.email.lower()
|
||||
|
||||
is_forgot_password_error_rate_limit = AccountService.is_forgot_password_error_rate_limit(args.email)
|
||||
is_forgot_password_error_rate_limit = AccountService.is_forgot_password_error_rate_limit(user_email)
|
||||
if is_forgot_password_error_rate_limit:
|
||||
raise EmailPasswordResetLimitError()
|
||||
|
||||
@@ -132,11 +131,16 @@ class ForgotPasswordCheckApi(Resource):
|
||||
if token_data is None:
|
||||
raise InvalidTokenError()
|
||||
|
||||
if user_email != token_data.get("email"):
|
||||
token_email = token_data.get("email")
|
||||
if not isinstance(token_email, str):
|
||||
raise InvalidEmailError()
|
||||
normalized_token_email = token_email.lower()
|
||||
|
||||
if user_email != normalized_token_email:
|
||||
raise InvalidEmailError()
|
||||
|
||||
if args.code != token_data.get("code"):
|
||||
AccountService.add_forgot_password_error_rate_limit(args.email)
|
||||
AccountService.add_forgot_password_error_rate_limit(user_email)
|
||||
raise EmailCodeError()
|
||||
|
||||
# Verified, revoke the first token
|
||||
@@ -144,11 +148,11 @@ class ForgotPasswordCheckApi(Resource):
|
||||
|
||||
# Refresh token data by generating a new token
|
||||
_, new_token = AccountService.generate_reset_password_token(
|
||||
user_email, code=args.code, additional_data={"phase": "reset"}
|
||||
token_email, code=args.code, additional_data={"phase": "reset"}
|
||||
)
|
||||
|
||||
AccountService.reset_forgot_password_error_rate_limit(args.email)
|
||||
return {"is_valid": True, "email": token_data.get("email"), "token": new_token}
|
||||
AccountService.reset_forgot_password_error_rate_limit(user_email)
|
||||
return {"is_valid": True, "email": normalized_token_email, "token": new_token}
|
||||
|
||||
|
||||
@console_ns.route("/forgot-password/resets")
|
||||
@@ -187,9 +191,8 @@ class ForgotPasswordResetApi(Resource):
|
||||
password_hashed = hash_password(args.new_password, salt)
|
||||
|
||||
email = reset_data.get("email", "")
|
||||
|
||||
with Session(db.engine) as session:
|
||||
account = session.execute(select(Account).filter_by(email=email)).scalar_one_or_none()
|
||||
account = AccountService.get_account_by_email_with_case_fallback(email, session=session)
|
||||
|
||||
if account:
|
||||
self._update_existing_account(account, password_hashed, salt, session)
|
||||
|
||||
@@ -90,32 +90,38 @@ class LoginApi(Resource):
|
||||
def post(self):
|
||||
"""Authenticate user and login."""
|
||||
args = LoginPayload.model_validate(console_ns.payload)
|
||||
request_email = args.email
|
||||
normalized_email = request_email.lower()
|
||||
|
||||
if dify_config.BILLING_ENABLED and BillingService.is_email_in_freeze(args.email):
|
||||
if dify_config.BILLING_ENABLED and BillingService.is_email_in_freeze(normalized_email):
|
||||
raise AccountInFreezeError()
|
||||
|
||||
is_login_error_rate_limit = AccountService.is_login_error_rate_limit(args.email)
|
||||
is_login_error_rate_limit = AccountService.is_login_error_rate_limit(normalized_email)
|
||||
if is_login_error_rate_limit:
|
||||
raise EmailPasswordLoginLimitError()
|
||||
|
||||
invite_token = args.invite_token
|
||||
invitation_data: dict[str, Any] | None = None
|
||||
if args.invite_token:
|
||||
invitation_data = RegisterService.get_invitation_if_token_valid(None, args.email, args.invite_token)
|
||||
if invite_token:
|
||||
invitation_data = RegisterService.get_invitation_with_case_fallback(None, request_email, invite_token)
|
||||
if invitation_data is None:
|
||||
invite_token = None
|
||||
|
||||
try:
|
||||
if invitation_data:
|
||||
data = invitation_data.get("data", {})
|
||||
invitee_email = data.get("email") if data else None
|
||||
if invitee_email != args.email:
|
||||
invitee_email_normalized = invitee_email.lower() if isinstance(invitee_email, str) else invitee_email
|
||||
if invitee_email_normalized != normalized_email:
|
||||
raise InvalidEmailError()
|
||||
account = AccountService.authenticate(args.email, args.password, args.invite_token)
|
||||
else:
|
||||
account = AccountService.authenticate(args.email, args.password)
|
||||
account = _authenticate_account_with_case_fallback(
|
||||
request_email, normalized_email, args.password, invite_token
|
||||
)
|
||||
except services.errors.account.AccountLoginError:
|
||||
raise AccountBannedError()
|
||||
except services.errors.account.AccountPasswordError:
|
||||
AccountService.add_login_error_rate_limit(args.email)
|
||||
raise AuthenticationFailedError()
|
||||
except services.errors.account.AccountPasswordError as exc:
|
||||
AccountService.add_login_error_rate_limit(normalized_email)
|
||||
raise AuthenticationFailedError() from exc
|
||||
# SELF_HOSTED only have one workspace
|
||||
tenants = TenantService.get_join_tenants(account)
|
||||
if len(tenants) == 0:
|
||||
@@ -130,7 +136,7 @@ class LoginApi(Resource):
|
||||
}
|
||||
|
||||
token_pair = AccountService.login(account=account, ip_address=extract_remote_ip(request))
|
||||
AccountService.reset_login_error_rate_limit(args.email)
|
||||
AccountService.reset_login_error_rate_limit(normalized_email)
|
||||
|
||||
# Create response with cookies instead of returning tokens in body
|
||||
response = make_response({"result": "success"})
|
||||
@@ -170,18 +176,19 @@ class ResetPasswordSendEmailApi(Resource):
|
||||
@console_ns.expect(console_ns.models[EmailPayload.__name__])
|
||||
def post(self):
|
||||
args = EmailPayload.model_validate(console_ns.payload)
|
||||
normalized_email = args.email.lower()
|
||||
|
||||
if args.language is not None and args.language == "zh-Hans":
|
||||
language = "zh-Hans"
|
||||
else:
|
||||
language = "en-US"
|
||||
try:
|
||||
account = AccountService.get_user_through_email(args.email)
|
||||
account = _get_account_with_case_fallback(args.email)
|
||||
except AccountRegisterError:
|
||||
raise AccountInFreezeError()
|
||||
|
||||
token = AccountService.send_reset_password_email(
|
||||
email=args.email,
|
||||
email=normalized_email,
|
||||
account=account,
|
||||
language=language,
|
||||
is_allow_register=FeatureService.get_system_features().is_allow_register,
|
||||
@@ -196,6 +203,7 @@ class EmailCodeLoginSendEmailApi(Resource):
|
||||
@console_ns.expect(console_ns.models[EmailPayload.__name__])
|
||||
def post(self):
|
||||
args = EmailPayload.model_validate(console_ns.payload)
|
||||
normalized_email = args.email.lower()
|
||||
|
||||
ip_address = extract_remote_ip(request)
|
||||
if AccountService.is_email_send_ip_limit(ip_address):
|
||||
@@ -206,13 +214,13 @@ class EmailCodeLoginSendEmailApi(Resource):
|
||||
else:
|
||||
language = "en-US"
|
||||
try:
|
||||
account = AccountService.get_user_through_email(args.email)
|
||||
account = _get_account_with_case_fallback(args.email)
|
||||
except AccountRegisterError:
|
||||
raise AccountInFreezeError()
|
||||
|
||||
if account is None:
|
||||
if FeatureService.get_system_features().is_allow_register:
|
||||
token = AccountService.send_email_code_login_email(email=args.email, language=language)
|
||||
token = AccountService.send_email_code_login_email(email=normalized_email, language=language)
|
||||
else:
|
||||
raise AccountNotFound()
|
||||
else:
|
||||
@@ -229,14 +237,17 @@ class EmailCodeLoginApi(Resource):
|
||||
def post(self):
|
||||
args = EmailCodeLoginPayload.model_validate(console_ns.payload)
|
||||
|
||||
user_email = args.email
|
||||
original_email = args.email
|
||||
user_email = original_email.lower()
|
||||
language = args.language
|
||||
|
||||
token_data = AccountService.get_email_code_login_data(args.token)
|
||||
if token_data is None:
|
||||
raise InvalidTokenError()
|
||||
|
||||
if token_data["email"] != args.email:
|
||||
token_email = token_data.get("email")
|
||||
normalized_token_email = token_email.lower() if isinstance(token_email, str) else token_email
|
||||
if normalized_token_email != user_email:
|
||||
raise InvalidEmailError()
|
||||
|
||||
if token_data["code"] != args.code:
|
||||
@@ -244,7 +255,7 @@ class EmailCodeLoginApi(Resource):
|
||||
|
||||
AccountService.revoke_email_code_login_token(args.token)
|
||||
try:
|
||||
account = AccountService.get_user_through_email(user_email)
|
||||
account = _get_account_with_case_fallback(original_email)
|
||||
except AccountRegisterError:
|
||||
raise AccountInFreezeError()
|
||||
if account:
|
||||
@@ -275,7 +286,7 @@ class EmailCodeLoginApi(Resource):
|
||||
except WorkspacesLimitExceededError:
|
||||
raise WorkspacesLimitExceeded()
|
||||
token_pair = AccountService.login(account, ip_address=extract_remote_ip(request))
|
||||
AccountService.reset_login_error_rate_limit(args.email)
|
||||
AccountService.reset_login_error_rate_limit(user_email)
|
||||
|
||||
# Create response with cookies instead of returning tokens in body
|
||||
response = make_response({"result": "success"})
|
||||
@@ -309,3 +320,22 @@ class RefreshTokenApi(Resource):
|
||||
return response
|
||||
except Exception as e:
|
||||
return {"result": "fail", "message": str(e)}, 401
|
||||
|
||||
|
||||
def _get_account_with_case_fallback(email: str):
|
||||
account = AccountService.get_user_through_email(email)
|
||||
if account or email == email.lower():
|
||||
return account
|
||||
|
||||
return AccountService.get_user_through_email(email.lower())
|
||||
|
||||
|
||||
def _authenticate_account_with_case_fallback(
|
||||
original_email: str, normalized_email: str, password: str, invite_token: str | None
|
||||
):
|
||||
try:
|
||||
return AccountService.authenticate(original_email, password, invite_token)
|
||||
except services.errors.account.AccountPasswordError:
|
||||
if original_email == normalized_email:
|
||||
raise
|
||||
return AccountService.authenticate(normalized_email, password, invite_token)
|
||||
|
||||
@@ -3,7 +3,6 @@ import logging
|
||||
import httpx
|
||||
from flask import current_app, redirect, request
|
||||
from flask_restx import Resource
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
from werkzeug.exceptions import Unauthorized
|
||||
|
||||
@@ -118,7 +117,10 @@ class OAuthCallback(Resource):
|
||||
invitation = RegisterService.get_invitation_by_token(token=invite_token)
|
||||
if invitation:
|
||||
invitation_email = invitation.get("email", None)
|
||||
if invitation_email != user_info.email:
|
||||
invitation_email_normalized = (
|
||||
invitation_email.lower() if isinstance(invitation_email, str) else invitation_email
|
||||
)
|
||||
if invitation_email_normalized != user_info.email.lower():
|
||||
return redirect(f"{dify_config.CONSOLE_WEB_URL}/signin?message=Invalid invitation token.")
|
||||
|
||||
return redirect(f"{dify_config.CONSOLE_WEB_URL}/signin/invite-settings?invite_token={invite_token}")
|
||||
@@ -175,7 +177,7 @@ def _get_account_by_openid_or_email(provider: str, user_info: OAuthUserInfo) ->
|
||||
|
||||
if not account:
|
||||
with Session(db.engine) as session:
|
||||
account = session.execute(select(Account).filter_by(email=user_info.email)).scalar_one_or_none()
|
||||
account = AccountService.get_account_by_email_with_case_fallback(user_info.email, session=session)
|
||||
|
||||
return account
|
||||
|
||||
@@ -197,9 +199,10 @@ def _generate_account(provider: str, user_info: OAuthUserInfo) -> tuple[Account,
|
||||
tenant_was_created.send(new_tenant)
|
||||
|
||||
if not account:
|
||||
normalized_email = user_info.email.lower()
|
||||
oauth_new_user = True
|
||||
if not FeatureService.get_system_features().is_allow_register:
|
||||
if dify_config.BILLING_ENABLED and BillingService.is_email_in_freeze(user_info.email):
|
||||
if dify_config.BILLING_ENABLED and BillingService.is_email_in_freeze(normalized_email):
|
||||
raise AccountRegisterError(
|
||||
description=(
|
||||
"This email account has been deleted within the past "
|
||||
@@ -210,7 +213,11 @@ def _generate_account(provider: str, user_info: OAuthUserInfo) -> tuple[Account,
|
||||
raise AccountRegisterError(description=("Invalid email or password"))
|
||||
account_name = user_info.name or "Dify"
|
||||
account = RegisterService.register(
|
||||
email=user_info.email, name=account_name, password=None, open_id=user_info.id, provider=provider
|
||||
email=normalized_email,
|
||||
name=account_name,
|
||||
password=None,
|
||||
open_id=user_info.id,
|
||||
provider=provider,
|
||||
)
|
||||
|
||||
# Set interface language
|
||||
|
||||
@@ -7,7 +7,7 @@ from typing import Literal, cast
|
||||
import sqlalchemy as sa
|
||||
from flask import request
|
||||
from flask_restx import Resource, fields, marshal, marshal_with
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
from sqlalchemy import asc, desc, select
|
||||
from werkzeug.exceptions import Forbidden, NotFound
|
||||
|
||||
@@ -104,6 +104,15 @@ class DocumentRenamePayload(BaseModel):
|
||||
name: str
|
||||
|
||||
|
||||
class DocumentDatasetListParam(BaseModel):
|
||||
page: int = Field(1, title="Page", description="Page number.")
|
||||
limit: int = Field(20, title="Limit", description="Page size.")
|
||||
search: str | None = Field(None, alias="keyword", title="Search", description="Search keyword.")
|
||||
sort_by: str = Field("-created_at", alias="sort", title="SortBy", description="Sort by field.")
|
||||
status: str | None = Field(None, title="Status", description="Document status.")
|
||||
fetch_val: str = Field("false", alias="fetch")
|
||||
|
||||
|
||||
register_schema_models(
|
||||
console_ns,
|
||||
KnowledgeConfig,
|
||||
@@ -225,14 +234,16 @@ class DatasetDocumentListApi(Resource):
|
||||
def get(self, dataset_id):
|
||||
current_user, current_tenant_id = current_account_with_tenant()
|
||||
dataset_id = str(dataset_id)
|
||||
page = request.args.get("page", default=1, type=int)
|
||||
limit = request.args.get("limit", default=20, type=int)
|
||||
search = request.args.get("keyword", default=None, type=str)
|
||||
sort = request.args.get("sort", default="-created_at", type=str)
|
||||
status = request.args.get("status", default=None, type=str)
|
||||
raw_args = request.args.to_dict()
|
||||
param = DocumentDatasetListParam.model_validate(raw_args)
|
||||
page = param.page
|
||||
limit = param.limit
|
||||
search = param.search
|
||||
sort = param.sort_by
|
||||
status = param.status
|
||||
# "yes", "true", "t", "y", "1" convert to True, while others convert to False.
|
||||
try:
|
||||
fetch_val = request.args.get("fetch", default="false")
|
||||
fetch_val = param.fetch_val
|
||||
if isinstance(fetch_val, bool):
|
||||
fetch = fetch_val
|
||||
else:
|
||||
|
||||
@@ -81,7 +81,7 @@ class ExternalKnowledgeApiPayload(BaseModel):
|
||||
class ExternalDatasetCreatePayload(BaseModel):
|
||||
external_knowledge_api_id: str
|
||||
external_knowledge_id: str
|
||||
name: str = Field(..., min_length=1, max_length=40)
|
||||
name: str = Field(..., min_length=1, max_length=100)
|
||||
description: str | None = Field(None, max_length=400)
|
||||
external_retrieval_model: dict[str, object] | None = None
|
||||
|
||||
|
||||
@@ -84,10 +84,11 @@ class SetupApi(Resource):
|
||||
raise NotInitValidateError()
|
||||
|
||||
args = SetupRequestPayload.model_validate(console_ns.payload)
|
||||
normalized_email = args.email.lower()
|
||||
|
||||
# setup
|
||||
RegisterService.setup(
|
||||
email=args.email,
|
||||
email=normalized_email,
|
||||
name=args.name,
|
||||
password=args.password,
|
||||
ip_address=extract_remote_ip(request),
|
||||
|
||||
@@ -30,6 +30,11 @@ class TagBindingRemovePayload(BaseModel):
|
||||
type: Literal["knowledge", "app"] | None = Field(default=None, description="Tag type")
|
||||
|
||||
|
||||
class TagListQueryParam(BaseModel):
|
||||
type: Literal["knowledge", "app", ""] = Field("", description="Tag type filter")
|
||||
keyword: str | None = Field(None, description="Search keyword")
|
||||
|
||||
|
||||
register_schema_models(
|
||||
console_ns,
|
||||
TagBasePayload,
|
||||
@@ -43,12 +48,15 @@ class TagListApi(Resource):
|
||||
@setup_required
|
||||
@login_required
|
||||
@account_initialization_required
|
||||
@console_ns.doc(
|
||||
params={"type": 'Tag type filter. Can be "knowledge" or "app".', "keyword": "Search keyword for tag name."}
|
||||
)
|
||||
@marshal_with(dataset_tag_fields)
|
||||
def get(self):
|
||||
_, current_tenant_id = current_account_with_tenant()
|
||||
tag_type = request.args.get("type", type=str, default="")
|
||||
keyword = request.args.get("keyword", default=None, type=str)
|
||||
tags = TagService.get_tags(tag_type, current_tenant_id, keyword)
|
||||
raw_args = request.args.to_dict()
|
||||
param = TagListQueryParam.model_validate(raw_args)
|
||||
tags = TagService.get_tags(param.type, current_tenant_id, param.keyword)
|
||||
|
||||
return tags, 200
|
||||
|
||||
|
||||
@@ -41,7 +41,7 @@ from fields.member_fields import account_fields
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from libs.helper import EmailStr, TimestampField, extract_remote_ip, timezone
|
||||
from libs.login import current_account_with_tenant, login_required
|
||||
from models import Account, AccountIntegrate, InvitationCode
|
||||
from models import AccountIntegrate, InvitationCode
|
||||
from services.account_service import AccountService
|
||||
from services.billing_service import BillingService
|
||||
from services.errors.account import CurrentPasswordIncorrectError as ServiceCurrentPasswordIncorrectError
|
||||
@@ -536,7 +536,8 @@ class ChangeEmailSendEmailApi(Resource):
|
||||
else:
|
||||
language = "en-US"
|
||||
account = None
|
||||
user_email = args.email
|
||||
user_email = None
|
||||
email_for_sending = args.email.lower()
|
||||
if args.phase is not None and args.phase == "new_email":
|
||||
if args.token is None:
|
||||
raise InvalidTokenError()
|
||||
@@ -546,16 +547,24 @@ class ChangeEmailSendEmailApi(Resource):
|
||||
raise InvalidTokenError()
|
||||
user_email = reset_data.get("email", "")
|
||||
|
||||
if user_email != current_user.email:
|
||||
if user_email.lower() != current_user.email.lower():
|
||||
raise InvalidEmailError()
|
||||
|
||||
user_email = current_user.email
|
||||
else:
|
||||
with Session(db.engine) as session:
|
||||
account = session.execute(select(Account).filter_by(email=args.email)).scalar_one_or_none()
|
||||
account = AccountService.get_account_by_email_with_case_fallback(args.email, session=session)
|
||||
if account is None:
|
||||
raise AccountNotFound()
|
||||
email_for_sending = account.email
|
||||
user_email = account.email
|
||||
|
||||
token = AccountService.send_change_email_email(
|
||||
account=account, email=args.email, old_email=user_email, language=language, phase=args.phase
|
||||
account=account,
|
||||
email=email_for_sending,
|
||||
old_email=user_email,
|
||||
language=language,
|
||||
phase=args.phase,
|
||||
)
|
||||
return {"result": "success", "data": token}
|
||||
|
||||
@@ -571,9 +580,9 @@ class ChangeEmailCheckApi(Resource):
|
||||
payload = console_ns.payload or {}
|
||||
args = ChangeEmailValidityPayload.model_validate(payload)
|
||||
|
||||
user_email = args.email
|
||||
user_email = args.email.lower()
|
||||
|
||||
is_change_email_error_rate_limit = AccountService.is_change_email_error_rate_limit(args.email)
|
||||
is_change_email_error_rate_limit = AccountService.is_change_email_error_rate_limit(user_email)
|
||||
if is_change_email_error_rate_limit:
|
||||
raise EmailChangeLimitError()
|
||||
|
||||
@@ -581,11 +590,13 @@ class ChangeEmailCheckApi(Resource):
|
||||
if token_data is None:
|
||||
raise InvalidTokenError()
|
||||
|
||||
if user_email != token_data.get("email"):
|
||||
token_email = token_data.get("email")
|
||||
normalized_token_email = token_email.lower() if isinstance(token_email, str) else token_email
|
||||
if user_email != normalized_token_email:
|
||||
raise InvalidEmailError()
|
||||
|
||||
if args.code != token_data.get("code"):
|
||||
AccountService.add_change_email_error_rate_limit(args.email)
|
||||
AccountService.add_change_email_error_rate_limit(user_email)
|
||||
raise EmailCodeError()
|
||||
|
||||
# Verified, revoke the first token
|
||||
@@ -596,8 +607,8 @@ class ChangeEmailCheckApi(Resource):
|
||||
user_email, code=args.code, old_email=token_data.get("old_email"), additional_data={}
|
||||
)
|
||||
|
||||
AccountService.reset_change_email_error_rate_limit(args.email)
|
||||
return {"is_valid": True, "email": token_data.get("email"), "token": new_token}
|
||||
AccountService.reset_change_email_error_rate_limit(user_email)
|
||||
return {"is_valid": True, "email": normalized_token_email, "token": new_token}
|
||||
|
||||
|
||||
@console_ns.route("/account/change-email/reset")
|
||||
@@ -611,11 +622,12 @@ class ChangeEmailResetApi(Resource):
|
||||
def post(self):
|
||||
payload = console_ns.payload or {}
|
||||
args = ChangeEmailResetPayload.model_validate(payload)
|
||||
normalized_new_email = args.new_email.lower()
|
||||
|
||||
if AccountService.is_account_in_freeze(args.new_email):
|
||||
if AccountService.is_account_in_freeze(normalized_new_email):
|
||||
raise AccountInFreezeError()
|
||||
|
||||
if not AccountService.check_email_unique(args.new_email):
|
||||
if not AccountService.check_email_unique(normalized_new_email):
|
||||
raise EmailAlreadyInUseError()
|
||||
|
||||
reset_data = AccountService.get_change_email_data(args.token)
|
||||
@@ -626,13 +638,13 @@ class ChangeEmailResetApi(Resource):
|
||||
|
||||
old_email = reset_data.get("old_email", "")
|
||||
current_user, _ = current_account_with_tenant()
|
||||
if current_user.email != old_email:
|
||||
if current_user.email.lower() != old_email.lower():
|
||||
raise AccountNotFound()
|
||||
|
||||
updated_account = AccountService.update_account_email(current_user, email=args.new_email)
|
||||
updated_account = AccountService.update_account_email(current_user, email=normalized_new_email)
|
||||
|
||||
AccountService.send_change_email_completed_notify_email(
|
||||
email=args.new_email,
|
||||
email=normalized_new_email,
|
||||
)
|
||||
|
||||
return updated_account
|
||||
@@ -645,8 +657,9 @@ class CheckEmailUnique(Resource):
|
||||
def post(self):
|
||||
payload = console_ns.payload or {}
|
||||
args = CheckEmailUniquePayload.model_validate(payload)
|
||||
if AccountService.is_account_in_freeze(args.email):
|
||||
normalized_email = args.email.lower()
|
||||
if AccountService.is_account_in_freeze(normalized_email):
|
||||
raise AccountInFreezeError()
|
||||
if not AccountService.check_email_unique(args.email):
|
||||
if not AccountService.check_email_unique(normalized_email):
|
||||
raise EmailAlreadyInUseError()
|
||||
return {"result": "success"}
|
||||
|
||||
@@ -116,26 +116,31 @@ class MemberInviteEmailApi(Resource):
|
||||
raise WorkspaceMembersLimitExceeded()
|
||||
|
||||
for invitee_email in invitee_emails:
|
||||
normalized_invitee_email = invitee_email.lower()
|
||||
try:
|
||||
if not inviter.current_tenant:
|
||||
raise ValueError("No current tenant")
|
||||
token = RegisterService.invite_new_member(
|
||||
inviter.current_tenant, invitee_email, interface_language, role=invitee_role, inviter=inviter
|
||||
tenant=inviter.current_tenant,
|
||||
email=invitee_email,
|
||||
language=interface_language,
|
||||
role=invitee_role,
|
||||
inviter=inviter,
|
||||
)
|
||||
encoded_invitee_email = parse.quote(invitee_email)
|
||||
encoded_invitee_email = parse.quote(normalized_invitee_email)
|
||||
invitation_results.append(
|
||||
{
|
||||
"status": "success",
|
||||
"email": invitee_email,
|
||||
"email": normalized_invitee_email,
|
||||
"url": f"{console_web_url}/activate?email={encoded_invitee_email}&token={token}",
|
||||
}
|
||||
)
|
||||
except AccountAlreadyInTenantError:
|
||||
invitation_results.append(
|
||||
{"status": "success", "email": invitee_email, "url": f"{console_web_url}/signin"}
|
||||
{"status": "success", "email": normalized_invitee_email, "url": f"{console_web_url}/signin"}
|
||||
)
|
||||
except Exception as e:
|
||||
invitation_results.append({"status": "failed", "email": invitee_email, "message": str(e)})
|
||||
invitation_results.append({"status": "failed", "email": normalized_invitee_email, "message": str(e)})
|
||||
|
||||
return {
|
||||
"result": "success",
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
import logging
|
||||
from collections.abc import Mapping
|
||||
from typing import Any
|
||||
|
||||
from flask import make_response, redirect, request
|
||||
from flask_restx import Resource, reqparse
|
||||
from pydantic import BaseModel, Field, model_validator
|
||||
from flask_restx import Resource
|
||||
from pydantic import BaseModel, model_validator
|
||||
from sqlalchemy.orm import Session
|
||||
from werkzeug.exceptions import BadRequest, Forbidden
|
||||
|
||||
from configs import dify_config
|
||||
from controllers.common.schema import register_schema_models
|
||||
from controllers.web.error import NotFoundError
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
from core.plugin.entities.plugin_daemon import CredentialType
|
||||
@@ -35,35 +35,38 @@ from ..wraps import (
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class TriggerSubscriptionUpdateRequest(BaseModel):
|
||||
"""Request payload for updating a trigger subscription"""
|
||||
class TriggerSubscriptionBuilderCreatePayload(BaseModel):
|
||||
credential_type: str = CredentialType.UNAUTHORIZED
|
||||
|
||||
name: str | None = Field(default=None, description="The name for the subscription")
|
||||
credentials: Mapping[str, Any] | None = Field(default=None, description="The credentials for the subscription")
|
||||
parameters: Mapping[str, Any] | None = Field(default=None, description="The parameters for the subscription")
|
||||
properties: Mapping[str, Any] | None = Field(default=None, description="The properties for the subscription")
|
||||
|
||||
class TriggerSubscriptionBuilderVerifyPayload(BaseModel):
|
||||
credentials: dict[str, Any]
|
||||
|
||||
|
||||
class TriggerSubscriptionBuilderUpdatePayload(BaseModel):
|
||||
name: str | None = None
|
||||
parameters: dict[str, Any] | None = None
|
||||
properties: dict[str, Any] | None = None
|
||||
credentials: dict[str, Any] | None = None
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_at_least_one_field(self):
|
||||
if all(v is None for v in (self.name, self.credentials, self.parameters, self.properties)):
|
||||
if all(v is None for v in self.model_dump().values()):
|
||||
raise ValueError("At least one of name, credentials, parameters, or properties must be provided")
|
||||
return self
|
||||
|
||||
|
||||
class TriggerSubscriptionVerifyRequest(BaseModel):
|
||||
"""Request payload for verifying subscription credentials."""
|
||||
|
||||
credentials: Mapping[str, Any] = Field(description="The credentials to verify")
|
||||
class TriggerOAuthClientPayload(BaseModel):
|
||||
client_params: dict[str, Any] | None = None
|
||||
enabled: bool | None = None
|
||||
|
||||
|
||||
console_ns.schema_model(
|
||||
TriggerSubscriptionUpdateRequest.__name__,
|
||||
TriggerSubscriptionUpdateRequest.model_json_schema(ref_template="#/definitions/{model}"),
|
||||
)
|
||||
|
||||
console_ns.schema_model(
|
||||
TriggerSubscriptionVerifyRequest.__name__,
|
||||
TriggerSubscriptionVerifyRequest.model_json_schema(ref_template="#/definitions/{model}"),
|
||||
register_schema_models(
|
||||
console_ns,
|
||||
TriggerSubscriptionBuilderCreatePayload,
|
||||
TriggerSubscriptionBuilderVerifyPayload,
|
||||
TriggerSubscriptionBuilderUpdatePayload,
|
||||
TriggerOAuthClientPayload,
|
||||
)
|
||||
|
||||
|
||||
@@ -132,16 +135,11 @@ class TriggerSubscriptionListApi(Resource):
|
||||
raise
|
||||
|
||||
|
||||
parser = reqparse.RequestParser().add_argument(
|
||||
"credential_type", type=str, required=False, nullable=True, location="json"
|
||||
)
|
||||
|
||||
|
||||
@console_ns.route(
|
||||
"/workspaces/current/trigger-provider/<path:provider>/subscriptions/builder/create",
|
||||
)
|
||||
class TriggerSubscriptionBuilderCreateApi(Resource):
|
||||
@console_ns.expect(parser)
|
||||
@console_ns.expect(console_ns.models[TriggerSubscriptionBuilderCreatePayload.__name__])
|
||||
@setup_required
|
||||
@login_required
|
||||
@edit_permission_required
|
||||
@@ -151,10 +149,10 @@ class TriggerSubscriptionBuilderCreateApi(Resource):
|
||||
user = current_user
|
||||
assert user.current_tenant_id is not None
|
||||
|
||||
args = parser.parse_args()
|
||||
payload = TriggerSubscriptionBuilderCreatePayload.model_validate(console_ns.payload or {})
|
||||
|
||||
try:
|
||||
credential_type = CredentialType.of(args.get("credential_type") or CredentialType.UNAUTHORIZED.value)
|
||||
credential_type = CredentialType.of(payload.credential_type)
|
||||
subscription_builder = TriggerSubscriptionBuilderService.create_trigger_subscription_builder(
|
||||
tenant_id=user.current_tenant_id,
|
||||
user_id=user.id,
|
||||
@@ -182,18 +180,11 @@ class TriggerSubscriptionBuilderGetApi(Resource):
|
||||
)
|
||||
|
||||
|
||||
parser_api = (
|
||||
reqparse.RequestParser()
|
||||
# The credentials of the subscription builder
|
||||
.add_argument("credentials", type=dict, required=False, nullable=True, location="json")
|
||||
)
|
||||
|
||||
|
||||
@console_ns.route(
|
||||
"/workspaces/current/trigger-provider/<path:provider>/subscriptions/builder/verify-and-update/<path:subscription_builder_id>",
|
||||
)
|
||||
class TriggerSubscriptionBuilderVerifyAndUpdateApi(Resource):
|
||||
@console_ns.expect(parser_api)
|
||||
class TriggerSubscriptionBuilderVerifyApi(Resource):
|
||||
@console_ns.expect(console_ns.models[TriggerSubscriptionBuilderVerifyPayload.__name__])
|
||||
@setup_required
|
||||
@login_required
|
||||
@edit_permission_required
|
||||
@@ -203,7 +194,7 @@ class TriggerSubscriptionBuilderVerifyAndUpdateApi(Resource):
|
||||
user = current_user
|
||||
assert user.current_tenant_id is not None
|
||||
|
||||
args = parser_api.parse_args()
|
||||
payload = TriggerSubscriptionBuilderVerifyPayload.model_validate(console_ns.payload or {})
|
||||
|
||||
try:
|
||||
# Use atomic update_and_verify to prevent race conditions
|
||||
@@ -213,7 +204,7 @@ class TriggerSubscriptionBuilderVerifyAndUpdateApi(Resource):
|
||||
provider_id=TriggerProviderID(provider),
|
||||
subscription_builder_id=subscription_builder_id,
|
||||
subscription_builder_updater=SubscriptionBuilderUpdater(
|
||||
credentials=args.get("credentials", None),
|
||||
credentials=payload.credentials,
|
||||
),
|
||||
)
|
||||
except Exception as e:
|
||||
@@ -221,24 +212,11 @@ class TriggerSubscriptionBuilderVerifyAndUpdateApi(Resource):
|
||||
raise ValueError(str(e)) from e
|
||||
|
||||
|
||||
parser_update_api = (
|
||||
reqparse.RequestParser()
|
||||
# The name of the subscription builder
|
||||
.add_argument("name", type=str, required=False, nullable=True, location="json")
|
||||
# The parameters of the subscription builder
|
||||
.add_argument("parameters", type=dict, required=False, nullable=True, location="json")
|
||||
# The properties of the subscription builder
|
||||
.add_argument("properties", type=dict, required=False, nullable=True, location="json")
|
||||
# The credentials of the subscription builder
|
||||
.add_argument("credentials", type=dict, required=False, nullable=True, location="json")
|
||||
)
|
||||
|
||||
|
||||
@console_ns.route(
|
||||
"/workspaces/current/trigger-provider/<path:provider>/subscriptions/builder/update/<path:subscription_builder_id>",
|
||||
)
|
||||
class TriggerSubscriptionBuilderUpdateApi(Resource):
|
||||
@console_ns.expect(parser_update_api)
|
||||
@console_ns.expect(console_ns.models[TriggerSubscriptionBuilderUpdatePayload.__name__])
|
||||
@setup_required
|
||||
@login_required
|
||||
@edit_permission_required
|
||||
@@ -249,7 +227,7 @@ class TriggerSubscriptionBuilderUpdateApi(Resource):
|
||||
assert isinstance(user, Account)
|
||||
assert user.current_tenant_id is not None
|
||||
|
||||
args = parser_update_api.parse_args()
|
||||
payload = TriggerSubscriptionBuilderUpdatePayload.model_validate(console_ns.payload or {})
|
||||
try:
|
||||
return jsonable_encoder(
|
||||
TriggerSubscriptionBuilderService.update_trigger_subscription_builder(
|
||||
@@ -257,10 +235,10 @@ class TriggerSubscriptionBuilderUpdateApi(Resource):
|
||||
provider_id=TriggerProviderID(provider),
|
||||
subscription_builder_id=subscription_builder_id,
|
||||
subscription_builder_updater=SubscriptionBuilderUpdater(
|
||||
name=args.get("name", None),
|
||||
parameters=args.get("parameters", None),
|
||||
properties=args.get("properties", None),
|
||||
credentials=args.get("credentials", None),
|
||||
name=payload.name,
|
||||
parameters=payload.parameters,
|
||||
properties=payload.properties,
|
||||
credentials=payload.credentials,
|
||||
),
|
||||
)
|
||||
)
|
||||
@@ -295,7 +273,7 @@ class TriggerSubscriptionBuilderLogsApi(Resource):
|
||||
"/workspaces/current/trigger-provider/<path:provider>/subscriptions/builder/build/<path:subscription_builder_id>",
|
||||
)
|
||||
class TriggerSubscriptionBuilderBuildApi(Resource):
|
||||
@console_ns.expect(parser_update_api)
|
||||
@console_ns.expect(console_ns.models[TriggerSubscriptionBuilderUpdatePayload.__name__])
|
||||
@setup_required
|
||||
@login_required
|
||||
@edit_permission_required
|
||||
@@ -304,7 +282,7 @@ class TriggerSubscriptionBuilderBuildApi(Resource):
|
||||
"""Build a subscription instance for a trigger provider"""
|
||||
user = current_user
|
||||
assert user.current_tenant_id is not None
|
||||
args = parser_update_api.parse_args()
|
||||
payload = TriggerSubscriptionBuilderUpdatePayload.model_validate(console_ns.payload or {})
|
||||
try:
|
||||
# Use atomic update_and_build to prevent race conditions
|
||||
TriggerSubscriptionBuilderService.update_and_build_builder(
|
||||
@@ -313,9 +291,9 @@ class TriggerSubscriptionBuilderBuildApi(Resource):
|
||||
provider_id=TriggerProviderID(provider),
|
||||
subscription_builder_id=subscription_builder_id,
|
||||
subscription_builder_updater=SubscriptionBuilderUpdater(
|
||||
name=args.get("name", None),
|
||||
parameters=args.get("parameters", None),
|
||||
properties=args.get("properties", None),
|
||||
name=payload.name,
|
||||
parameters=payload.parameters,
|
||||
properties=payload.properties,
|
||||
),
|
||||
)
|
||||
return 200
|
||||
@@ -328,7 +306,7 @@ class TriggerSubscriptionBuilderBuildApi(Resource):
|
||||
"/workspaces/current/trigger-provider/<path:subscription_id>/subscriptions/update",
|
||||
)
|
||||
class TriggerSubscriptionUpdateApi(Resource):
|
||||
@console_ns.expect(console_ns.models[TriggerSubscriptionUpdateRequest.__name__])
|
||||
@console_ns.expect(console_ns.models[TriggerSubscriptionBuilderUpdatePayload.__name__])
|
||||
@setup_required
|
||||
@login_required
|
||||
@edit_permission_required
|
||||
@@ -338,7 +316,7 @@ class TriggerSubscriptionUpdateApi(Resource):
|
||||
user = current_user
|
||||
assert user.current_tenant_id is not None
|
||||
|
||||
request = TriggerSubscriptionUpdateRequest.model_validate(console_ns.payload)
|
||||
request = TriggerSubscriptionBuilderUpdatePayload.model_validate(console_ns.payload or {})
|
||||
|
||||
subscription = TriggerProviderService.get_subscription_by_id(
|
||||
tenant_id=user.current_tenant_id,
|
||||
@@ -568,13 +546,6 @@ class TriggerOAuthCallbackApi(Resource):
|
||||
return redirect(f"{dify_config.CONSOLE_WEB_URL}/oauth-callback")
|
||||
|
||||
|
||||
parser_oauth_client = (
|
||||
reqparse.RequestParser()
|
||||
.add_argument("client_params", type=dict, required=False, nullable=True, location="json")
|
||||
.add_argument("enabled", type=bool, required=False, nullable=True, location="json")
|
||||
)
|
||||
|
||||
|
||||
@console_ns.route("/workspaces/current/trigger-provider/<path:provider>/oauth/client")
|
||||
class TriggerOAuthClientManageApi(Resource):
|
||||
@setup_required
|
||||
@@ -622,7 +593,7 @@ class TriggerOAuthClientManageApi(Resource):
|
||||
logger.exception("Error getting OAuth client", exc_info=e)
|
||||
raise
|
||||
|
||||
@console_ns.expect(parser_oauth_client)
|
||||
@console_ns.expect(console_ns.models[TriggerOAuthClientPayload.__name__])
|
||||
@setup_required
|
||||
@login_required
|
||||
@is_admin_or_owner_required
|
||||
@@ -632,15 +603,15 @@ class TriggerOAuthClientManageApi(Resource):
|
||||
user = current_user
|
||||
assert user.current_tenant_id is not None
|
||||
|
||||
args = parser_oauth_client.parse_args()
|
||||
payload = TriggerOAuthClientPayload.model_validate(console_ns.payload or {})
|
||||
|
||||
try:
|
||||
provider_id = TriggerProviderID(provider)
|
||||
return TriggerProviderService.save_custom_oauth_client_params(
|
||||
tenant_id=user.current_tenant_id,
|
||||
provider_id=provider_id,
|
||||
client_params=args.get("client_params"),
|
||||
enabled=args.get("enabled"),
|
||||
client_params=payload.client_params,
|
||||
enabled=payload.enabled,
|
||||
)
|
||||
|
||||
except ValueError as e:
|
||||
@@ -676,7 +647,7 @@ class TriggerOAuthClientManageApi(Resource):
|
||||
"/workspaces/current/trigger-provider/<path:provider>/subscriptions/verify/<path:subscription_id>",
|
||||
)
|
||||
class TriggerSubscriptionVerifyApi(Resource):
|
||||
@console_ns.expect(console_ns.models[TriggerSubscriptionVerifyRequest.__name__])
|
||||
@console_ns.expect(console_ns.models[TriggerSubscriptionBuilderVerifyPayload.__name__])
|
||||
@setup_required
|
||||
@login_required
|
||||
@edit_permission_required
|
||||
@@ -686,9 +657,7 @@ class TriggerSubscriptionVerifyApi(Resource):
|
||||
user = current_user
|
||||
assert user.current_tenant_id is not None
|
||||
|
||||
verify_request: TriggerSubscriptionVerifyRequest = TriggerSubscriptionVerifyRequest.model_validate(
|
||||
console_ns.payload
|
||||
)
|
||||
verify_request = TriggerSubscriptionBuilderVerifyPayload.model_validate(console_ns.payload or {})
|
||||
|
||||
try:
|
||||
result = TriggerProviderService.verify_subscription_credentials(
|
||||
|
||||
@@ -80,6 +80,9 @@ tenant_fields = {
|
||||
"in_trial": fields.Boolean,
|
||||
"trial_end_reason": fields.String,
|
||||
"custom_config": fields.Raw(attribute="custom_config"),
|
||||
"trial_credits": fields.Integer,
|
||||
"trial_credits_used": fields.Integer,
|
||||
"next_credit_reset_date": fields.Integer,
|
||||
}
|
||||
|
||||
tenants_fields = {
|
||||
|
||||
@@ -4,7 +4,6 @@ import secrets
|
||||
from flask import request
|
||||
from flask_restx import Resource
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from controllers.common.schema import register_schema_models
|
||||
@@ -22,7 +21,7 @@ from controllers.web import web_ns
|
||||
from extensions.ext_database import db
|
||||
from libs.helper import EmailStr, extract_remote_ip
|
||||
from libs.password import hash_password, valid_password
|
||||
from models import Account
|
||||
from models.account import Account
|
||||
from services.account_service import AccountService
|
||||
|
||||
|
||||
@@ -70,6 +69,9 @@ class ForgotPasswordSendEmailApi(Resource):
|
||||
def post(self):
|
||||
payload = ForgotPasswordSendPayload.model_validate(web_ns.payload or {})
|
||||
|
||||
request_email = payload.email
|
||||
normalized_email = request_email.lower()
|
||||
|
||||
ip_address = extract_remote_ip(request)
|
||||
if AccountService.is_email_send_ip_limit(ip_address):
|
||||
raise EmailSendIpLimitError()
|
||||
@@ -80,12 +82,12 @@ class ForgotPasswordSendEmailApi(Resource):
|
||||
language = "en-US"
|
||||
|
||||
with Session(db.engine) as session:
|
||||
account = session.execute(select(Account).filter_by(email=payload.email)).scalar_one_or_none()
|
||||
account = AccountService.get_account_by_email_with_case_fallback(request_email, session=session)
|
||||
token = None
|
||||
if account is None:
|
||||
raise AuthenticationFailedError()
|
||||
else:
|
||||
token = AccountService.send_reset_password_email(account=account, email=payload.email, language=language)
|
||||
token = AccountService.send_reset_password_email(account=account, email=normalized_email, language=language)
|
||||
|
||||
return {"result": "success", "data": token}
|
||||
|
||||
@@ -104,9 +106,9 @@ class ForgotPasswordCheckApi(Resource):
|
||||
def post(self):
|
||||
payload = ForgotPasswordCheckPayload.model_validate(web_ns.payload or {})
|
||||
|
||||
user_email = payload.email
|
||||
user_email = payload.email.lower()
|
||||
|
||||
is_forgot_password_error_rate_limit = AccountService.is_forgot_password_error_rate_limit(payload.email)
|
||||
is_forgot_password_error_rate_limit = AccountService.is_forgot_password_error_rate_limit(user_email)
|
||||
if is_forgot_password_error_rate_limit:
|
||||
raise EmailPasswordResetLimitError()
|
||||
|
||||
@@ -114,11 +116,16 @@ class ForgotPasswordCheckApi(Resource):
|
||||
if token_data is None:
|
||||
raise InvalidTokenError()
|
||||
|
||||
if user_email != token_data.get("email"):
|
||||
token_email = token_data.get("email")
|
||||
if not isinstance(token_email, str):
|
||||
raise InvalidEmailError()
|
||||
normalized_token_email = token_email.lower()
|
||||
|
||||
if user_email != normalized_token_email:
|
||||
raise InvalidEmailError()
|
||||
|
||||
if payload.code != token_data.get("code"):
|
||||
AccountService.add_forgot_password_error_rate_limit(payload.email)
|
||||
AccountService.add_forgot_password_error_rate_limit(user_email)
|
||||
raise EmailCodeError()
|
||||
|
||||
# Verified, revoke the first token
|
||||
@@ -126,11 +133,11 @@ class ForgotPasswordCheckApi(Resource):
|
||||
|
||||
# Refresh token data by generating a new token
|
||||
_, new_token = AccountService.generate_reset_password_token(
|
||||
user_email, code=payload.code, additional_data={"phase": "reset"}
|
||||
token_email, code=payload.code, additional_data={"phase": "reset"}
|
||||
)
|
||||
|
||||
AccountService.reset_forgot_password_error_rate_limit(payload.email)
|
||||
return {"is_valid": True, "email": token_data.get("email"), "token": new_token}
|
||||
AccountService.reset_forgot_password_error_rate_limit(user_email)
|
||||
return {"is_valid": True, "email": normalized_token_email, "token": new_token}
|
||||
|
||||
|
||||
@web_ns.route("/forgot-password/resets")
|
||||
@@ -174,7 +181,7 @@ class ForgotPasswordResetApi(Resource):
|
||||
email = reset_data.get("email", "")
|
||||
|
||||
with Session(db.engine) as session:
|
||||
account = session.execute(select(Account).filter_by(email=email)).scalar_one_or_none()
|
||||
account = AccountService.get_account_by_email_with_case_fallback(email, session=session)
|
||||
|
||||
if account:
|
||||
self._update_existing_account(account, password_hashed, salt, session)
|
||||
|
||||
@@ -10,7 +10,12 @@ from controllers.console.auth.error import (
|
||||
InvalidEmailError,
|
||||
)
|
||||
from controllers.console.error import AccountBannedError
|
||||
from controllers.console.wraps import only_edition_enterprise, setup_required
|
||||
from controllers.console.wraps import (
|
||||
decrypt_code_field,
|
||||
decrypt_password_field,
|
||||
only_edition_enterprise,
|
||||
setup_required,
|
||||
)
|
||||
from controllers.web import web_ns
|
||||
from controllers.web.wraps import decode_jwt_token
|
||||
from libs.helper import email
|
||||
@@ -42,6 +47,7 @@ class LoginApi(Resource):
|
||||
404: "Account not found",
|
||||
}
|
||||
)
|
||||
@decrypt_password_field
|
||||
def post(self):
|
||||
"""Authenticate user and login."""
|
||||
parser = (
|
||||
@@ -181,6 +187,7 @@ class EmailCodeLoginApi(Resource):
|
||||
404: "Account not found",
|
||||
}
|
||||
)
|
||||
@decrypt_code_field
|
||||
def post(self):
|
||||
parser = (
|
||||
reqparse.RequestParser()
|
||||
@@ -190,25 +197,29 @@ class EmailCodeLoginApi(Resource):
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
user_email = args["email"]
|
||||
user_email = args["email"].lower()
|
||||
|
||||
token_data = WebAppAuthService.get_email_code_login_data(args["token"])
|
||||
if token_data is None:
|
||||
raise InvalidTokenError()
|
||||
|
||||
if token_data["email"] != args["email"]:
|
||||
token_email = token_data.get("email")
|
||||
if not isinstance(token_email, str):
|
||||
raise InvalidEmailError()
|
||||
normalized_token_email = token_email.lower()
|
||||
if normalized_token_email != user_email:
|
||||
raise InvalidEmailError()
|
||||
|
||||
if token_data["code"] != args["code"]:
|
||||
raise EmailCodeError()
|
||||
|
||||
WebAppAuthService.revoke_email_code_login_token(args["token"])
|
||||
account = WebAppAuthService.get_user_through_email(user_email)
|
||||
account = WebAppAuthService.get_user_through_email(token_email)
|
||||
if not account:
|
||||
raise AuthenticationFailedError()
|
||||
|
||||
token = WebAppAuthService.login(account=account)
|
||||
AccountService.reset_login_error_rate_limit(args["email"])
|
||||
AccountService.reset_login_error_rate_limit(user_email)
|
||||
response = make_response({"result": "success", "data": {"access_token": token}})
|
||||
# set_access_token_to_cookie(request, response, token, samesite="None", httponly=False)
|
||||
return response
|
||||
|
||||
@@ -1,380 +0,0 @@
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from copy import deepcopy
|
||||
from typing import Any
|
||||
|
||||
from core.agent.base_agent_runner import BaseAgentRunner
|
||||
from core.agent.entities import AgentEntity, AgentLog, AgentResult
|
||||
from core.agent.patterns.strategy_factory import StrategyFactory
|
||||
from core.app.apps.base_app_queue_manager import PublishFrom
|
||||
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
|
||||
from core.file import file_manager
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
LLMResult,
|
||||
LLMResultChunk,
|
||||
LLMUsage,
|
||||
PromptMessage,
|
||||
PromptMessageContentType,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
|
||||
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
|
||||
from core.tools.__base.tool import Tool
|
||||
from core.tools.entities.tool_entities import ToolInvokeMeta
|
||||
from core.tools.tool_engine import ToolEngine
|
||||
from models.model import Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgentAppRunner(BaseAgentRunner):
|
||||
def _create_tool_invoke_hook(self, message: Message):
|
||||
"""
|
||||
Create a tool invoke hook that uses ToolEngine.agent_invoke.
|
||||
This hook handles file creation and returns proper meta information.
|
||||
"""
|
||||
# Get trace manager from app generate entity
|
||||
trace_manager = self.application_generate_entity.trace_manager
|
||||
|
||||
def tool_invoke_hook(
|
||||
tool: Tool, tool_args: dict[str, Any], tool_name: str
|
||||
) -> tuple[str, list[str], ToolInvokeMeta]:
|
||||
"""Hook that uses agent_invoke for proper file and meta handling."""
|
||||
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
||||
tool=tool,
|
||||
tool_parameters=tool_args,
|
||||
user_id=self.user_id,
|
||||
tenant_id=self.tenant_id,
|
||||
message=message,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
agent_tool_callback=self.agent_callback,
|
||||
trace_manager=trace_manager,
|
||||
app_id=self.application_generate_entity.app_config.app_id,
|
||||
message_id=message.id,
|
||||
conversation_id=self.conversation.id,
|
||||
)
|
||||
|
||||
# Publish files and track IDs
|
||||
for message_file_id in message_files:
|
||||
self.queue_manager.publish(
|
||||
QueueMessageFileEvent(message_file_id=message_file_id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
self._current_message_file_ids.append(message_file_id)
|
||||
|
||||
return tool_invoke_response, message_files, tool_invoke_meta
|
||||
|
||||
return tool_invoke_hook
|
||||
|
||||
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
|
||||
"""
|
||||
Run Agent application
|
||||
"""
|
||||
self.query = query
|
||||
app_generate_entity = self.application_generate_entity
|
||||
|
||||
app_config = self.app_config
|
||||
assert app_config is not None, "app_config is required"
|
||||
assert app_config.agent is not None, "app_config.agent is required"
|
||||
|
||||
# convert tools into ModelRuntime Tool format
|
||||
tool_instances, _ = self._init_prompt_tools()
|
||||
|
||||
assert app_config.agent
|
||||
|
||||
# Create tool invoke hook for agent_invoke
|
||||
tool_invoke_hook = self._create_tool_invoke_hook(message)
|
||||
|
||||
# Get instruction for ReAct strategy
|
||||
instruction = self.app_config.prompt_template.simple_prompt_template or ""
|
||||
|
||||
# Use factory to create appropriate strategy
|
||||
strategy = StrategyFactory.create_strategy(
|
||||
model_features=self.model_features,
|
||||
model_instance=self.model_instance,
|
||||
tools=list(tool_instances.values()),
|
||||
files=list(self.files),
|
||||
max_iterations=app_config.agent.max_iteration,
|
||||
context=self.build_execution_context(),
|
||||
agent_strategy=self.config.strategy,
|
||||
tool_invoke_hook=tool_invoke_hook,
|
||||
instruction=instruction,
|
||||
)
|
||||
|
||||
# Initialize state variables
|
||||
current_agent_thought_id = None
|
||||
has_published_thought = False
|
||||
current_tool_name: str | None = None
|
||||
self._current_message_file_ids: list[str] = []
|
||||
|
||||
# organize prompt messages
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
|
||||
# Run strategy
|
||||
generator = strategy.run(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_generate_entity.model_conf.parameters,
|
||||
stop=app_generate_entity.model_conf.stop,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
# Consume generator and collect result
|
||||
result: AgentResult | None = None
|
||||
try:
|
||||
while True:
|
||||
try:
|
||||
output = next(generator)
|
||||
except StopIteration as e:
|
||||
# Generator finished, get the return value
|
||||
result = e.value
|
||||
break
|
||||
|
||||
if isinstance(output, LLMResultChunk):
|
||||
# Handle LLM chunk
|
||||
if current_agent_thought_id and not has_published_thought:
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
has_published_thought = True
|
||||
|
||||
yield output
|
||||
|
||||
elif isinstance(output, AgentLog):
|
||||
# Handle Agent Log using log_type for type-safe dispatch
|
||||
if output.status == AgentLog.LogStatus.START:
|
||||
if output.log_type == AgentLog.LogType.ROUND:
|
||||
# Start of a new round
|
||||
message_file_ids: list[str] = []
|
||||
current_agent_thought_id = self.create_agent_thought(
|
||||
message_id=message.id,
|
||||
message="",
|
||||
tool_name="",
|
||||
tool_input="",
|
||||
messages_ids=message_file_ids,
|
||||
)
|
||||
has_published_thought = False
|
||||
|
||||
elif output.log_type == AgentLog.LogType.TOOL_CALL:
|
||||
if current_agent_thought_id is None:
|
||||
continue
|
||||
|
||||
# Tool call start - extract data from structured fields
|
||||
current_tool_name = output.data.get("tool_name", "")
|
||||
tool_input = output.data.get("tool_args", {})
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=current_agent_thought_id,
|
||||
tool_name=current_tool_name,
|
||||
tool_input=tool_input,
|
||||
thought=None,
|
||||
observation=None,
|
||||
tool_invoke_meta=None,
|
||||
answer=None,
|
||||
messages_ids=[],
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
elif output.status == AgentLog.LogStatus.SUCCESS:
|
||||
if output.log_type == AgentLog.LogType.THOUGHT:
|
||||
if current_agent_thought_id is None:
|
||||
continue
|
||||
|
||||
thought_text = output.data.get("thought")
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=current_agent_thought_id,
|
||||
tool_name=None,
|
||||
tool_input=None,
|
||||
thought=thought_text,
|
||||
observation=None,
|
||||
tool_invoke_meta=None,
|
||||
answer=None,
|
||||
messages_ids=[],
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
elif output.log_type == AgentLog.LogType.TOOL_CALL:
|
||||
if current_agent_thought_id is None:
|
||||
continue
|
||||
|
||||
# Tool call finished
|
||||
tool_output = output.data.get("output")
|
||||
# Get meta from strategy output (now properly populated)
|
||||
tool_meta = output.data.get("meta")
|
||||
|
||||
# Wrap tool_meta with tool_name as key (required by agent_service)
|
||||
if tool_meta and current_tool_name:
|
||||
tool_meta = {current_tool_name: tool_meta}
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=current_agent_thought_id,
|
||||
tool_name=None,
|
||||
tool_input=None,
|
||||
thought=None,
|
||||
observation=tool_output,
|
||||
tool_invoke_meta=tool_meta,
|
||||
answer=None,
|
||||
messages_ids=self._current_message_file_ids,
|
||||
)
|
||||
# Clear message file ids after saving
|
||||
self._current_message_file_ids = []
|
||||
current_tool_name = None
|
||||
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
elif output.log_type == AgentLog.LogType.ROUND:
|
||||
if current_agent_thought_id is None:
|
||||
continue
|
||||
|
||||
# Round finished - save LLM usage and answer
|
||||
llm_usage = output.metadata.get(AgentLog.LogMetadata.LLM_USAGE)
|
||||
llm_result = output.data.get("llm_result")
|
||||
final_answer = output.data.get("final_answer")
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=current_agent_thought_id,
|
||||
tool_name=None,
|
||||
tool_input=None,
|
||||
thought=llm_result,
|
||||
observation=None,
|
||||
tool_invoke_meta=None,
|
||||
answer=final_answer,
|
||||
messages_ids=[],
|
||||
llm_usage=llm_usage,
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=current_agent_thought_id),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
except Exception:
|
||||
# Re-raise any other exceptions
|
||||
raise
|
||||
|
||||
# Process final result
|
||||
if isinstance(result, AgentResult):
|
||||
final_answer = result.text
|
||||
usage = result.usage or LLMUsage.empty_usage()
|
||||
|
||||
# Publish end event
|
||||
self.queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=LLMResult(
|
||||
model=self.model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=final_answer),
|
||||
usage=usage,
|
||||
system_fingerprint="",
|
||||
)
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Initialize system message
|
||||
"""
|
||||
if not prompt_template:
|
||||
return prompt_messages or []
|
||||
|
||||
prompt_messages = prompt_messages or []
|
||||
|
||||
if prompt_messages and isinstance(prompt_messages[0], SystemPromptMessage):
|
||||
prompt_messages[0] = SystemPromptMessage(content=prompt_template)
|
||||
return prompt_messages
|
||||
|
||||
if not prompt_messages:
|
||||
return [SystemPromptMessage(content=prompt_template)]
|
||||
|
||||
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
|
||||
return prompt_messages
|
||||
|
||||
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize user query
|
||||
"""
|
||||
if self.files:
|
||||
# get image detail config
|
||||
image_detail_config = (
|
||||
self.application_generate_entity.file_upload_config.image_config.detail
|
||||
if (
|
||||
self.application_generate_entity.file_upload_config
|
||||
and self.application_generate_entity.file_upload_config.image_config
|
||||
)
|
||||
else None
|
||||
)
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
for file in self.files:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(
|
||||
file,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
)
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=query))
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
As for now, gpt supports both fc and vision at the first iteration.
|
||||
We need to remove the image messages from the prompt messages at the first iteration.
|
||||
"""
|
||||
prompt_messages = deepcopy(prompt_messages)
|
||||
|
||||
for prompt_message in prompt_messages:
|
||||
if isinstance(prompt_message, UserPromptMessage):
|
||||
if isinstance(prompt_message.content, list):
|
||||
prompt_message.content = "\n".join(
|
||||
[
|
||||
content.data
|
||||
if content.type == PromptMessageContentType.TEXT
|
||||
else "[image]"
|
||||
if content.type == PromptMessageContentType.IMAGE
|
||||
else "[file]"
|
||||
for content in prompt_message.content
|
||||
]
|
||||
)
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _organize_prompt_messages(self):
|
||||
# For ReAct strategy, use the agent prompt template
|
||||
if self.config.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT and self.config.prompt:
|
||||
prompt_template = self.config.prompt.first_prompt
|
||||
else:
|
||||
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
|
||||
|
||||
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
|
||||
query_prompt_messages = self._organize_user_query(self.query or "", [])
|
||||
|
||||
self.history_prompt_messages = AgentHistoryPromptTransform(
|
||||
model_config=self.model_config,
|
||||
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
|
||||
history_messages=self.history_prompt_messages,
|
||||
memory=self.memory,
|
||||
).get_prompt()
|
||||
|
||||
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
|
||||
if len(self._current_thoughts) != 0:
|
||||
# clear messages after the first iteration
|
||||
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
|
||||
return prompt_messages
|
||||
@@ -1,11 +1,12 @@
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
from decimal import Decimal
|
||||
from typing import Union, cast
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.agent.entities import AgentEntity, AgentToolEntity, ExecutionContext
|
||||
from core.agent.entities import AgentEntity, AgentToolEntity
|
||||
from core.app.app_config.features.file_upload.manager import FileUploadConfigManager
|
||||
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager
|
||||
@@ -41,6 +42,7 @@ from core.tools.tool_manager import ToolManager
|
||||
from core.tools.utils.dataset_retriever_tool import DatasetRetrieverTool
|
||||
from extensions.ext_database import db
|
||||
from factories import file_factory
|
||||
from models.enums import CreatorUserRole
|
||||
from models.model import Conversation, Message, MessageAgentThought, MessageFile
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -114,20 +116,9 @@ class BaseAgentRunner(AppRunner):
|
||||
features = model_schema.features if model_schema and model_schema.features else []
|
||||
self.stream_tool_call = ModelFeature.STREAM_TOOL_CALL in features
|
||||
self.files = application_generate_entity.files if ModelFeature.VISION in features else []
|
||||
self.model_features = features
|
||||
self.query: str | None = ""
|
||||
self._current_thoughts: list[PromptMessage] = []
|
||||
|
||||
def build_execution_context(self) -> ExecutionContext:
|
||||
"""Build execution context."""
|
||||
return ExecutionContext(
|
||||
user_id=self.user_id,
|
||||
app_id=self.app_config.app_id,
|
||||
conversation_id=self.conversation.id,
|
||||
message_id=self.message.id,
|
||||
tenant_id=self.tenant_id,
|
||||
)
|
||||
|
||||
def _repack_app_generate_entity(
|
||||
self, app_generate_entity: AgentChatAppGenerateEntity
|
||||
) -> AgentChatAppGenerateEntity:
|
||||
@@ -300,6 +291,7 @@ class BaseAgentRunner(AppRunner):
|
||||
thought = MessageAgentThought(
|
||||
message_id=message_id,
|
||||
message_chain_id=None,
|
||||
tool_process_data=None,
|
||||
thought="",
|
||||
tool=tool_name,
|
||||
tool_labels_str="{}",
|
||||
@@ -307,20 +299,20 @@ class BaseAgentRunner(AppRunner):
|
||||
tool_input=tool_input,
|
||||
message=message,
|
||||
message_token=0,
|
||||
message_unit_price=0,
|
||||
message_price_unit=0,
|
||||
message_unit_price=Decimal(0),
|
||||
message_price_unit=Decimal("0.001"),
|
||||
message_files=json.dumps(messages_ids) if messages_ids else "",
|
||||
answer="",
|
||||
observation="",
|
||||
answer_token=0,
|
||||
answer_unit_price=0,
|
||||
answer_price_unit=0,
|
||||
answer_unit_price=Decimal(0),
|
||||
answer_price_unit=Decimal("0.001"),
|
||||
tokens=0,
|
||||
total_price=0,
|
||||
total_price=Decimal(0),
|
||||
position=self.agent_thought_count + 1,
|
||||
currency="USD",
|
||||
latency=0,
|
||||
created_by_role="account",
|
||||
created_by_role=CreatorUserRole.ACCOUNT,
|
||||
created_by=self.user_id,
|
||||
)
|
||||
|
||||
@@ -353,7 +345,8 @@ class BaseAgentRunner(AppRunner):
|
||||
raise ValueError("agent thought not found")
|
||||
|
||||
if thought:
|
||||
agent_thought.thought += thought
|
||||
existing_thought = agent_thought.thought or ""
|
||||
agent_thought.thought = f"{existing_thought}{thought}"
|
||||
|
||||
if tool_name:
|
||||
agent_thought.tool = tool_name
|
||||
@@ -451,21 +444,30 @@ class BaseAgentRunner(AppRunner):
|
||||
agent_thoughts: list[MessageAgentThought] = message.agent_thoughts
|
||||
if agent_thoughts:
|
||||
for agent_thought in agent_thoughts:
|
||||
tools = agent_thought.tool
|
||||
if tools:
|
||||
tools = tools.split(";")
|
||||
tool_names_raw = agent_thought.tool
|
||||
if tool_names_raw:
|
||||
tool_names = tool_names_raw.split(";")
|
||||
tool_calls: list[AssistantPromptMessage.ToolCall] = []
|
||||
tool_call_response: list[ToolPromptMessage] = []
|
||||
try:
|
||||
tool_inputs = json.loads(agent_thought.tool_input)
|
||||
except Exception:
|
||||
tool_inputs = {tool: {} for tool in tools}
|
||||
try:
|
||||
tool_responses = json.loads(agent_thought.observation)
|
||||
except Exception:
|
||||
tool_responses = dict.fromkeys(tools, agent_thought.observation)
|
||||
tool_input_payload = agent_thought.tool_input
|
||||
if tool_input_payload:
|
||||
try:
|
||||
tool_inputs = json.loads(tool_input_payload)
|
||||
except Exception:
|
||||
tool_inputs = {tool: {} for tool in tool_names}
|
||||
else:
|
||||
tool_inputs = {tool: {} for tool in tool_names}
|
||||
|
||||
for tool in tools:
|
||||
observation_payload = agent_thought.observation
|
||||
if observation_payload:
|
||||
try:
|
||||
tool_responses = json.loads(observation_payload)
|
||||
except Exception:
|
||||
tool_responses = dict.fromkeys(tool_names, observation_payload)
|
||||
else:
|
||||
tool_responses = dict.fromkeys(tool_names, observation_payload)
|
||||
|
||||
for tool in tool_names:
|
||||
# generate a uuid for tool call
|
||||
tool_call_id = str(uuid.uuid4())
|
||||
tool_calls.append(
|
||||
@@ -495,7 +497,7 @@ class BaseAgentRunner(AppRunner):
|
||||
*tool_call_response,
|
||||
]
|
||||
)
|
||||
if not tools:
|
||||
if not tool_names_raw:
|
||||
result.append(AssistantPromptMessage(content=agent_thought.thought))
|
||||
else:
|
||||
if message.answer:
|
||||
|
||||
437
api/core/agent/cot_agent_runner.py
Normal file
437
api/core/agent/cot_agent_runner.py
Normal file
@@ -0,0 +1,437 @@
|
||||
import json
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from typing import Any
|
||||
|
||||
from core.agent.base_agent_runner import BaseAgentRunner
|
||||
from core.agent.entities import AgentScratchpadUnit
|
||||
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
|
||||
from core.app.apps.base_app_queue_manager import PublishFrom
|
||||
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.ops.ops_trace_manager import TraceQueueManager
|
||||
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
|
||||
from core.tools.__base.tool import Tool
|
||||
from core.tools.entities.tool_entities import ToolInvokeMeta
|
||||
from core.tools.tool_engine import ToolEngine
|
||||
from core.workflow.nodes.agent.exc import AgentMaxIterationError
|
||||
from models.model import Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CotAgentRunner(BaseAgentRunner, ABC):
|
||||
_is_first_iteration = True
|
||||
_ignore_observation_providers = ["wenxin"]
|
||||
_historic_prompt_messages: list[PromptMessage]
|
||||
_agent_scratchpad: list[AgentScratchpadUnit]
|
||||
_instruction: str
|
||||
_query: str
|
||||
_prompt_messages_tools: Sequence[PromptMessageTool]
|
||||
|
||||
def run(
|
||||
self,
|
||||
message: Message,
|
||||
query: str,
|
||||
inputs: Mapping[str, str],
|
||||
) -> Generator:
|
||||
"""
|
||||
Run Cot agent application
|
||||
"""
|
||||
|
||||
app_generate_entity = self.application_generate_entity
|
||||
self._repack_app_generate_entity(app_generate_entity)
|
||||
self._init_react_state(query)
|
||||
|
||||
trace_manager = app_generate_entity.trace_manager
|
||||
|
||||
# check model mode
|
||||
if "Observation" not in app_generate_entity.model_conf.stop:
|
||||
if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
|
||||
app_generate_entity.model_conf.stop.append("Observation")
|
||||
|
||||
app_config = self.app_config
|
||||
assert app_config.agent
|
||||
|
||||
# init instruction
|
||||
inputs = inputs or {}
|
||||
instruction = app_config.prompt_template.simple_prompt_template or ""
|
||||
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
|
||||
|
||||
iteration_step = 1
|
||||
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
|
||||
|
||||
# convert tools into ModelRuntime Tool format
|
||||
tool_instances, prompt_messages_tools = self._init_prompt_tools()
|
||||
self._prompt_messages_tools = prompt_messages_tools
|
||||
|
||||
function_call_state = True
|
||||
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
|
||||
final_answer = ""
|
||||
prompt_messages: list = [] # Initialize prompt_messages
|
||||
agent_thought_id = "" # Initialize agent_thought_id
|
||||
|
||||
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
|
||||
if not final_llm_usage_dict["usage"]:
|
||||
final_llm_usage_dict["usage"] = usage
|
||||
else:
|
||||
llm_usage = final_llm_usage_dict["usage"]
|
||||
llm_usage.prompt_tokens += usage.prompt_tokens
|
||||
llm_usage.completion_tokens += usage.completion_tokens
|
||||
llm_usage.total_tokens += usage.total_tokens
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
llm_usage.completion_price += usage.completion_price
|
||||
llm_usage.total_price += usage.total_price
|
||||
|
||||
model_instance = self.model_instance
|
||||
|
||||
while function_call_state and iteration_step <= max_iteration_steps:
|
||||
# continue to run until there is not any tool call
|
||||
function_call_state = False
|
||||
|
||||
if iteration_step == max_iteration_steps:
|
||||
# the last iteration, remove all tools
|
||||
self._prompt_messages_tools = []
|
||||
|
||||
message_file_ids: list[str] = []
|
||||
|
||||
agent_thought_id = self.create_agent_thought(
|
||||
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
|
||||
)
|
||||
|
||||
if iteration_step > 1:
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
# recalc llm max tokens
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_generate_entity.model_conf.parameters,
|
||||
tools=[],
|
||||
stop=app_generate_entity.model_conf.stop,
|
||||
stream=True,
|
||||
user=self.user_id,
|
||||
callbacks=[],
|
||||
)
|
||||
|
||||
usage_dict: dict[str, LLMUsage | None] = {}
|
||||
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
|
||||
scratchpad = AgentScratchpadUnit(
|
||||
agent_response="",
|
||||
thought="",
|
||||
action_str="",
|
||||
observation="",
|
||||
action=None,
|
||||
)
|
||||
|
||||
# publish agent thought if it's first iteration
|
||||
if iteration_step == 1:
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
for chunk in react_chunks:
|
||||
if isinstance(chunk, AgentScratchpadUnit.Action):
|
||||
action = chunk
|
||||
# detect action
|
||||
assert scratchpad.agent_response is not None
|
||||
scratchpad.agent_response += json.dumps(chunk.model_dump())
|
||||
scratchpad.action_str = json.dumps(chunk.model_dump())
|
||||
scratchpad.action = action
|
||||
else:
|
||||
assert scratchpad.agent_response is not None
|
||||
scratchpad.agent_response += chunk
|
||||
assert scratchpad.thought is not None
|
||||
scratchpad.thought += chunk
|
||||
yield LLMResultChunk(
|
||||
model=self.model_config.model,
|
||||
prompt_messages=prompt_messages,
|
||||
system_fingerprint="",
|
||||
delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
|
||||
)
|
||||
|
||||
assert scratchpad.thought is not None
|
||||
scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
|
||||
self._agent_scratchpad.append(scratchpad)
|
||||
|
||||
# Check if max iteration is reached and model still wants to call tools
|
||||
if iteration_step == max_iteration_steps and scratchpad.action:
|
||||
if scratchpad.action.action_name.lower() != "final answer":
|
||||
raise AgentMaxIterationError(app_config.agent.max_iteration)
|
||||
|
||||
# get llm usage
|
||||
if "usage" in usage_dict:
|
||||
if usage_dict["usage"] is not None:
|
||||
increase_usage(llm_usage, usage_dict["usage"])
|
||||
else:
|
||||
usage_dict["usage"] = LLMUsage.empty_usage()
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name=(scratchpad.action.action_name if scratchpad.action and not scratchpad.is_final() else ""),
|
||||
tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
|
||||
tool_invoke_meta={},
|
||||
thought=scratchpad.thought or "",
|
||||
observation="",
|
||||
answer=scratchpad.agent_response or "",
|
||||
messages_ids=[],
|
||||
llm_usage=usage_dict["usage"],
|
||||
)
|
||||
|
||||
if not scratchpad.is_final():
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
if not scratchpad.action:
|
||||
# failed to extract action, return final answer directly
|
||||
final_answer = ""
|
||||
else:
|
||||
if scratchpad.action.action_name.lower() == "final answer":
|
||||
# action is final answer, return final answer directly
|
||||
try:
|
||||
if isinstance(scratchpad.action.action_input, dict):
|
||||
final_answer = json.dumps(scratchpad.action.action_input, ensure_ascii=False)
|
||||
elif isinstance(scratchpad.action.action_input, str):
|
||||
final_answer = scratchpad.action.action_input
|
||||
else:
|
||||
final_answer = f"{scratchpad.action.action_input}"
|
||||
except TypeError:
|
||||
final_answer = f"{scratchpad.action.action_input}"
|
||||
else:
|
||||
function_call_state = True
|
||||
# action is tool call, invoke tool
|
||||
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
|
||||
action=scratchpad.action,
|
||||
tool_instances=tool_instances,
|
||||
message_file_ids=message_file_ids,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
scratchpad.observation = tool_invoke_response
|
||||
scratchpad.agent_response = tool_invoke_response
|
||||
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name=scratchpad.action.action_name,
|
||||
tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
|
||||
thought=scratchpad.thought or "",
|
||||
observation={scratchpad.action.action_name: tool_invoke_response},
|
||||
tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
|
||||
answer=scratchpad.agent_response,
|
||||
messages_ids=message_file_ids,
|
||||
llm_usage=usage_dict["usage"],
|
||||
)
|
||||
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
# update prompt tool message
|
||||
for prompt_tool in self._prompt_messages_tools:
|
||||
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
||||
|
||||
iteration_step += 1
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
|
||||
),
|
||||
system_fingerprint="",
|
||||
)
|
||||
|
||||
# save agent thought
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name="",
|
||||
tool_input={},
|
||||
tool_invoke_meta={},
|
||||
thought=final_answer,
|
||||
observation={},
|
||||
answer=final_answer,
|
||||
messages_ids=[],
|
||||
)
|
||||
# publish end event
|
||||
self.queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=LLMResult(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=final_answer),
|
||||
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
|
||||
system_fingerprint="",
|
||||
)
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def _handle_invoke_action(
|
||||
self,
|
||||
action: AgentScratchpadUnit.Action,
|
||||
tool_instances: Mapping[str, Tool],
|
||||
message_file_ids: list[str],
|
||||
trace_manager: TraceQueueManager | None = None,
|
||||
) -> tuple[str, ToolInvokeMeta]:
|
||||
"""
|
||||
handle invoke action
|
||||
:param action: action
|
||||
:param tool_instances: tool instances
|
||||
:param message_file_ids: message file ids
|
||||
:param trace_manager: trace manager
|
||||
:return: observation, meta
|
||||
"""
|
||||
# action is tool call, invoke tool
|
||||
tool_call_name = action.action_name
|
||||
tool_call_args = action.action_input
|
||||
tool_instance = tool_instances.get(tool_call_name)
|
||||
|
||||
if not tool_instance:
|
||||
answer = f"there is not a tool named {tool_call_name}"
|
||||
return answer, ToolInvokeMeta.error_instance(answer)
|
||||
|
||||
if isinstance(tool_call_args, str):
|
||||
try:
|
||||
tool_call_args = json.loads(tool_call_args)
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# invoke tool
|
||||
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
||||
tool=tool_instance,
|
||||
tool_parameters=tool_call_args,
|
||||
user_id=self.user_id,
|
||||
tenant_id=self.tenant_id,
|
||||
message=self.message,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
agent_tool_callback=self.agent_callback,
|
||||
trace_manager=trace_manager,
|
||||
)
|
||||
|
||||
# publish files
|
||||
for message_file_id in message_files:
|
||||
# publish message file
|
||||
self.queue_manager.publish(
|
||||
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
# add message file ids
|
||||
message_file_ids.append(message_file_id)
|
||||
|
||||
return tool_invoke_response, tool_invoke_meta
|
||||
|
||||
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
|
||||
"""
|
||||
convert dict to action
|
||||
"""
|
||||
return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
|
||||
|
||||
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: Mapping[str, Any]) -> str:
|
||||
"""
|
||||
fill in inputs from external data tools
|
||||
"""
|
||||
for key, value in inputs.items():
|
||||
try:
|
||||
instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
return instruction
|
||||
|
||||
def _init_react_state(self, query):
|
||||
"""
|
||||
init agent scratchpad
|
||||
"""
|
||||
self._query = query
|
||||
self._agent_scratchpad = []
|
||||
self._historic_prompt_messages = self._organize_historic_prompt_messages()
|
||||
|
||||
@abstractmethod
|
||||
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||
"""
|
||||
organize prompt messages
|
||||
"""
|
||||
|
||||
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
|
||||
"""
|
||||
format assistant message
|
||||
"""
|
||||
message = ""
|
||||
for scratchpad in agent_scratchpad:
|
||||
if scratchpad.is_final():
|
||||
message += f"Final Answer: {scratchpad.agent_response}"
|
||||
else:
|
||||
message += f"Thought: {scratchpad.thought}\n\n"
|
||||
if scratchpad.action_str:
|
||||
message += f"Action: {scratchpad.action_str}\n\n"
|
||||
if scratchpad.observation:
|
||||
message += f"Observation: {scratchpad.observation}\n\n"
|
||||
|
||||
return message
|
||||
|
||||
def _organize_historic_prompt_messages(
|
||||
self, current_session_messages: list[PromptMessage] | None = None
|
||||
) -> list[PromptMessage]:
|
||||
"""
|
||||
organize historic prompt messages
|
||||
"""
|
||||
result: list[PromptMessage] = []
|
||||
scratchpads: list[AgentScratchpadUnit] = []
|
||||
current_scratchpad: AgentScratchpadUnit | None = None
|
||||
|
||||
for message in self.history_prompt_messages:
|
||||
if isinstance(message, AssistantPromptMessage):
|
||||
if not current_scratchpad:
|
||||
assert isinstance(message.content, str)
|
||||
current_scratchpad = AgentScratchpadUnit(
|
||||
agent_response=message.content,
|
||||
thought=message.content or "I am thinking about how to help you",
|
||||
action_str="",
|
||||
action=None,
|
||||
observation=None,
|
||||
)
|
||||
scratchpads.append(current_scratchpad)
|
||||
if message.tool_calls:
|
||||
try:
|
||||
current_scratchpad.action = AgentScratchpadUnit.Action(
|
||||
action_name=message.tool_calls[0].function.name,
|
||||
action_input=json.loads(message.tool_calls[0].function.arguments),
|
||||
)
|
||||
current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
|
||||
except Exception:
|
||||
logger.exception("Failed to parse tool call from assistant message")
|
||||
elif isinstance(message, ToolPromptMessage):
|
||||
if current_scratchpad:
|
||||
assert isinstance(message.content, str)
|
||||
current_scratchpad.observation = message.content
|
||||
else:
|
||||
raise NotImplementedError("expected str type")
|
||||
elif isinstance(message, UserPromptMessage):
|
||||
if scratchpads:
|
||||
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
|
||||
scratchpads = []
|
||||
current_scratchpad = None
|
||||
|
||||
result.append(message)
|
||||
|
||||
if scratchpads:
|
||||
result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
|
||||
|
||||
historic_prompts = AgentHistoryPromptTransform(
|
||||
model_config=self.model_config,
|
||||
prompt_messages=current_session_messages or [],
|
||||
history_messages=result,
|
||||
memory=self.memory,
|
||||
).get_prompt()
|
||||
return historic_prompts
|
||||
118
api/core/agent/cot_chat_agent_runner.py
Normal file
118
api/core/agent/cot_chat_agent_runner.py
Normal file
@@ -0,0 +1,118 @@
|
||||
import json
|
||||
|
||||
from core.agent.cot_agent_runner import CotAgentRunner
|
||||
from core.file import file_manager
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
|
||||
|
||||
class CotChatAgentRunner(CotAgentRunner):
|
||||
def _organize_system_prompt(self) -> SystemPromptMessage:
|
||||
"""
|
||||
Organize system prompt
|
||||
"""
|
||||
assert self.app_config.agent
|
||||
assert self.app_config.agent.prompt
|
||||
|
||||
prompt_entity = self.app_config.agent.prompt
|
||||
if not prompt_entity:
|
||||
raise ValueError("Agent prompt configuration is not set")
|
||||
first_prompt = prompt_entity.first_prompt
|
||||
|
||||
system_prompt = (
|
||||
first_prompt.replace("{{instruction}}", self._instruction)
|
||||
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
|
||||
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
|
||||
)
|
||||
|
||||
return SystemPromptMessage(content=system_prompt)
|
||||
|
||||
def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize user query
|
||||
"""
|
||||
if self.files:
|
||||
# get image detail config
|
||||
image_detail_config = (
|
||||
self.application_generate_entity.file_upload_config.image_config.detail
|
||||
if (
|
||||
self.application_generate_entity.file_upload_config
|
||||
and self.application_generate_entity.file_upload_config.image_config
|
||||
)
|
||||
else None
|
||||
)
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
for file in self.files:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(
|
||||
file,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
)
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=query))
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize
|
||||
"""
|
||||
# organize system prompt
|
||||
system_message = self._organize_system_prompt()
|
||||
|
||||
# organize current assistant messages
|
||||
agent_scratchpad = self._agent_scratchpad
|
||||
if not agent_scratchpad:
|
||||
assistant_messages = []
|
||||
else:
|
||||
assistant_message = AssistantPromptMessage(content="")
|
||||
assistant_message.content = "" # FIXME: type check tell mypy that assistant_message.content is str
|
||||
for unit in agent_scratchpad:
|
||||
if unit.is_final():
|
||||
assert isinstance(assistant_message.content, str)
|
||||
assistant_message.content += f"Final Answer: {unit.agent_response}"
|
||||
else:
|
||||
assert isinstance(assistant_message.content, str)
|
||||
assistant_message.content += f"Thought: {unit.thought}\n\n"
|
||||
if unit.action_str:
|
||||
assistant_message.content += f"Action: {unit.action_str}\n\n"
|
||||
if unit.observation:
|
||||
assistant_message.content += f"Observation: {unit.observation}\n\n"
|
||||
|
||||
assistant_messages = [assistant_message]
|
||||
|
||||
# query messages
|
||||
query_messages = self._organize_user_query(self._query, [])
|
||||
|
||||
if assistant_messages:
|
||||
# organize historic prompt messages
|
||||
historic_messages = self._organize_historic_prompt_messages(
|
||||
[system_message, *query_messages, *assistant_messages, UserPromptMessage(content="continue")]
|
||||
)
|
||||
messages = [
|
||||
system_message,
|
||||
*historic_messages,
|
||||
*query_messages,
|
||||
*assistant_messages,
|
||||
UserPromptMessage(content="continue"),
|
||||
]
|
||||
else:
|
||||
# organize historic prompt messages
|
||||
historic_messages = self._organize_historic_prompt_messages([system_message, *query_messages])
|
||||
messages = [system_message, *historic_messages, *query_messages]
|
||||
|
||||
# join all messages
|
||||
return messages
|
||||
87
api/core/agent/cot_completion_agent_runner.py
Normal file
87
api/core/agent/cot_completion_agent_runner.py
Normal file
@@ -0,0 +1,87 @@
|
||||
import json
|
||||
|
||||
from core.agent.cot_agent_runner import CotAgentRunner
|
||||
from core.model_runtime.entities.message_entities import (
|
||||
AssistantPromptMessage,
|
||||
PromptMessage,
|
||||
TextPromptMessageContent,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
|
||||
|
||||
class CotCompletionAgentRunner(CotAgentRunner):
|
||||
def _organize_instruction_prompt(self) -> str:
|
||||
"""
|
||||
Organize instruction prompt
|
||||
"""
|
||||
if self.app_config.agent is None:
|
||||
raise ValueError("Agent configuration is not set")
|
||||
prompt_entity = self.app_config.agent.prompt
|
||||
if prompt_entity is None:
|
||||
raise ValueError("prompt entity is not set")
|
||||
first_prompt = prompt_entity.first_prompt
|
||||
|
||||
system_prompt = (
|
||||
first_prompt.replace("{{instruction}}", self._instruction)
|
||||
.replace("{{tools}}", json.dumps(jsonable_encoder(self._prompt_messages_tools)))
|
||||
.replace("{{tool_names}}", ", ".join([tool.name for tool in self._prompt_messages_tools]))
|
||||
)
|
||||
|
||||
return system_prompt
|
||||
|
||||
def _organize_historic_prompt(self, current_session_messages: list[PromptMessage] | None = None) -> str:
|
||||
"""
|
||||
Organize historic prompt
|
||||
"""
|
||||
historic_prompt_messages = self._organize_historic_prompt_messages(current_session_messages)
|
||||
historic_prompt = ""
|
||||
|
||||
for message in historic_prompt_messages:
|
||||
if isinstance(message, UserPromptMessage):
|
||||
historic_prompt += f"Question: {message.content}\n\n"
|
||||
elif isinstance(message, AssistantPromptMessage):
|
||||
if isinstance(message.content, str):
|
||||
historic_prompt += message.content + "\n\n"
|
||||
elif isinstance(message.content, list):
|
||||
for content in message.content:
|
||||
if not isinstance(content, TextPromptMessageContent):
|
||||
continue
|
||||
historic_prompt += content.data
|
||||
|
||||
return historic_prompt
|
||||
|
||||
def _organize_prompt_messages(self) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize prompt messages
|
||||
"""
|
||||
# organize system prompt
|
||||
system_prompt = self._organize_instruction_prompt()
|
||||
|
||||
# organize historic prompt messages
|
||||
historic_prompt = self._organize_historic_prompt()
|
||||
|
||||
# organize current assistant messages
|
||||
agent_scratchpad = self._agent_scratchpad
|
||||
assistant_prompt = ""
|
||||
for unit in agent_scratchpad or []:
|
||||
if unit.is_final():
|
||||
assistant_prompt += f"Final Answer: {unit.agent_response}"
|
||||
else:
|
||||
assistant_prompt += f"Thought: {unit.thought}\n\n"
|
||||
if unit.action_str:
|
||||
assistant_prompt += f"Action: {unit.action_str}\n\n"
|
||||
if unit.observation:
|
||||
assistant_prompt += f"Observation: {unit.observation}\n\n"
|
||||
|
||||
# query messages
|
||||
query_prompt = f"Question: {self._query}"
|
||||
|
||||
# join all messages
|
||||
prompt = (
|
||||
system_prompt.replace("{{historic_messages}}", historic_prompt)
|
||||
.replace("{{agent_scratchpad}}", assistant_prompt)
|
||||
.replace("{{query}}", query_prompt)
|
||||
)
|
||||
|
||||
return [UserPromptMessage(content=prompt)]
|
||||
@@ -1,5 +1,3 @@
|
||||
import uuid
|
||||
from collections.abc import Mapping
|
||||
from enum import StrEnum
|
||||
from typing import Any, Union
|
||||
|
||||
@@ -94,96 +92,3 @@ class AgentInvokeMessage(ToolInvokeMessage):
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class ExecutionContext(BaseModel):
|
||||
"""Execution context containing trace and audit information.
|
||||
|
||||
This context carries all the IDs and metadata that are not part of
|
||||
the core business logic but needed for tracing, auditing, and
|
||||
correlation purposes.
|
||||
"""
|
||||
|
||||
user_id: str | None = None
|
||||
app_id: str | None = None
|
||||
conversation_id: str | None = None
|
||||
message_id: str | None = None
|
||||
tenant_id: str | None = None
|
||||
|
||||
@classmethod
|
||||
def create_minimal(cls, user_id: str | None = None) -> "ExecutionContext":
|
||||
"""Create a minimal context with only essential fields."""
|
||||
return cls(user_id=user_id)
|
||||
|
||||
def to_dict(self) -> dict[str, Any]:
|
||||
"""Convert to dictionary for passing to legacy code."""
|
||||
return {
|
||||
"user_id": self.user_id,
|
||||
"app_id": self.app_id,
|
||||
"conversation_id": self.conversation_id,
|
||||
"message_id": self.message_id,
|
||||
"tenant_id": self.tenant_id,
|
||||
}
|
||||
|
||||
def with_updates(self, **kwargs) -> "ExecutionContext":
|
||||
"""Create a new context with updated fields."""
|
||||
data = self.to_dict()
|
||||
data.update(kwargs)
|
||||
|
||||
return ExecutionContext(
|
||||
user_id=data.get("user_id"),
|
||||
app_id=data.get("app_id"),
|
||||
conversation_id=data.get("conversation_id"),
|
||||
message_id=data.get("message_id"),
|
||||
tenant_id=data.get("tenant_id"),
|
||||
)
|
||||
|
||||
|
||||
class AgentLog(BaseModel):
|
||||
"""
|
||||
Agent Log.
|
||||
"""
|
||||
|
||||
class LogType(StrEnum):
|
||||
"""Type of agent log entry."""
|
||||
|
||||
ROUND = "round" # A complete iteration round
|
||||
THOUGHT = "thought" # LLM thinking/reasoning
|
||||
TOOL_CALL = "tool_call" # Tool invocation
|
||||
|
||||
class LogMetadata(StrEnum):
|
||||
STARTED_AT = "started_at"
|
||||
FINISHED_AT = "finished_at"
|
||||
ELAPSED_TIME = "elapsed_time"
|
||||
TOTAL_PRICE = "total_price"
|
||||
TOTAL_TOKENS = "total_tokens"
|
||||
PROVIDER = "provider"
|
||||
CURRENCY = "currency"
|
||||
LLM_USAGE = "llm_usage"
|
||||
ICON = "icon"
|
||||
ICON_DARK = "icon_dark"
|
||||
|
||||
class LogStatus(StrEnum):
|
||||
START = "start"
|
||||
ERROR = "error"
|
||||
SUCCESS = "success"
|
||||
|
||||
id: str = Field(default_factory=lambda: str(uuid.uuid4()), description="The id of the log")
|
||||
label: str = Field(..., description="The label of the log")
|
||||
log_type: LogType = Field(..., description="The type of the log")
|
||||
parent_id: str | None = Field(default=None, description="Leave empty for root log")
|
||||
error: str | None = Field(default=None, description="The error message")
|
||||
status: LogStatus = Field(..., description="The status of the log")
|
||||
data: Mapping[str, Any] = Field(..., description="Detailed log data")
|
||||
metadata: Mapping[LogMetadata, Any] = Field(default={}, description="The metadata of the log")
|
||||
|
||||
|
||||
class AgentResult(BaseModel):
|
||||
"""
|
||||
Agent execution result.
|
||||
"""
|
||||
|
||||
text: str = Field(default="", description="The generated text")
|
||||
files: list[Any] = Field(default_factory=list, description="Files produced during execution")
|
||||
usage: Any | None = Field(default=None, description="LLM usage statistics")
|
||||
finish_reason: str | None = Field(default=None, description="Reason for completion")
|
||||
|
||||
468
api/core/agent/fc_agent_runner.py
Normal file
468
api/core/agent/fc_agent_runner.py
Normal file
@@ -0,0 +1,468 @@
|
||||
import json
|
||||
import logging
|
||||
from collections.abc import Generator
|
||||
from copy import deepcopy
|
||||
from typing import Any, Union
|
||||
|
||||
from core.agent.base_agent_runner import BaseAgentRunner
|
||||
from core.app.apps.base_app_queue_manager import PublishFrom
|
||||
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
|
||||
from core.file import file_manager
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
LLMResult,
|
||||
LLMResultChunk,
|
||||
LLMResultChunkDelta,
|
||||
LLMUsage,
|
||||
PromptMessage,
|
||||
PromptMessageContentType,
|
||||
SystemPromptMessage,
|
||||
TextPromptMessageContent,
|
||||
ToolPromptMessage,
|
||||
UserPromptMessage,
|
||||
)
|
||||
from core.model_runtime.entities.message_entities import ImagePromptMessageContent, PromptMessageContentUnionTypes
|
||||
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
|
||||
from core.tools.entities.tool_entities import ToolInvokeMeta
|
||||
from core.tools.tool_engine import ToolEngine
|
||||
from core.workflow.nodes.agent.exc import AgentMaxIterationError
|
||||
from models.model import Message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class FunctionCallAgentRunner(BaseAgentRunner):
|
||||
def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
|
||||
"""
|
||||
Run FunctionCall agent application
|
||||
"""
|
||||
self.query = query
|
||||
app_generate_entity = self.application_generate_entity
|
||||
|
||||
app_config = self.app_config
|
||||
assert app_config is not None, "app_config is required"
|
||||
assert app_config.agent is not None, "app_config.agent is required"
|
||||
|
||||
# convert tools into ModelRuntime Tool format
|
||||
tool_instances, prompt_messages_tools = self._init_prompt_tools()
|
||||
|
||||
assert app_config.agent
|
||||
|
||||
iteration_step = 1
|
||||
max_iteration_steps = min(app_config.agent.max_iteration, 99) + 1
|
||||
|
||||
# continue to run until there is not any tool call
|
||||
function_call_state = True
|
||||
llm_usage: dict[str, LLMUsage | None] = {"usage": None}
|
||||
final_answer = ""
|
||||
prompt_messages: list = [] # Initialize prompt_messages
|
||||
|
||||
# get tracing instance
|
||||
trace_manager = app_generate_entity.trace_manager
|
||||
|
||||
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage | None], usage: LLMUsage):
|
||||
if not final_llm_usage_dict["usage"]:
|
||||
final_llm_usage_dict["usage"] = usage
|
||||
else:
|
||||
llm_usage = final_llm_usage_dict["usage"]
|
||||
llm_usage.prompt_tokens += usage.prompt_tokens
|
||||
llm_usage.completion_tokens += usage.completion_tokens
|
||||
llm_usage.total_tokens += usage.total_tokens
|
||||
llm_usage.prompt_price += usage.prompt_price
|
||||
llm_usage.completion_price += usage.completion_price
|
||||
llm_usage.total_price += usage.total_price
|
||||
|
||||
model_instance = self.model_instance
|
||||
|
||||
while function_call_state and iteration_step <= max_iteration_steps:
|
||||
function_call_state = False
|
||||
|
||||
if iteration_step == max_iteration_steps:
|
||||
# the last iteration, remove all tools
|
||||
prompt_messages_tools = []
|
||||
|
||||
message_file_ids: list[str] = []
|
||||
agent_thought_id = self.create_agent_thought(
|
||||
message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
|
||||
)
|
||||
|
||||
# recalc llm max tokens
|
||||
prompt_messages = self._organize_prompt_messages()
|
||||
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
|
||||
# invoke model
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
|
||||
prompt_messages=prompt_messages,
|
||||
model_parameters=app_generate_entity.model_conf.parameters,
|
||||
tools=prompt_messages_tools,
|
||||
stop=app_generate_entity.model_conf.stop,
|
||||
stream=self.stream_tool_call,
|
||||
user=self.user_id,
|
||||
callbacks=[],
|
||||
)
|
||||
|
||||
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
|
||||
|
||||
# save full response
|
||||
response = ""
|
||||
|
||||
# save tool call names and inputs
|
||||
tool_call_names = ""
|
||||
tool_call_inputs = ""
|
||||
|
||||
current_llm_usage = None
|
||||
|
||||
if isinstance(chunks, Generator):
|
||||
is_first_chunk = True
|
||||
for chunk in chunks:
|
||||
if is_first_chunk:
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
is_first_chunk = False
|
||||
# check if there is any tool call
|
||||
if self.check_tool_calls(chunk):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_tool_calls(chunk) or [])
|
||||
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps(
|
||||
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
|
||||
)
|
||||
except TypeError:
|
||||
# fallback: force ASCII to handle non-serializable objects
|
||||
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
|
||||
|
||||
if chunk.delta.message and chunk.delta.message.content:
|
||||
if isinstance(chunk.delta.message.content, list):
|
||||
for content in chunk.delta.message.content:
|
||||
response += content.data
|
||||
else:
|
||||
response += str(chunk.delta.message.content)
|
||||
|
||||
if chunk.delta.usage:
|
||||
increase_usage(llm_usage, chunk.delta.usage)
|
||||
current_llm_usage = chunk.delta.usage
|
||||
|
||||
yield chunk
|
||||
else:
|
||||
result = chunks
|
||||
# check if there is any tool call
|
||||
if self.check_blocking_tool_calls(result):
|
||||
function_call_state = True
|
||||
tool_calls.extend(self.extract_blocking_tool_calls(result) or [])
|
||||
tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
|
||||
try:
|
||||
tool_call_inputs = json.dumps(
|
||||
{tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
|
||||
)
|
||||
except TypeError:
|
||||
# fallback: force ASCII to handle non-serializable objects
|
||||
tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
|
||||
|
||||
if result.usage:
|
||||
increase_usage(llm_usage, result.usage)
|
||||
current_llm_usage = result.usage
|
||||
|
||||
if result.message and result.message.content:
|
||||
if isinstance(result.message.content, list):
|
||||
for content in result.message.content:
|
||||
response += content.data
|
||||
else:
|
||||
response += str(result.message.content)
|
||||
|
||||
if not result.message.content:
|
||||
result.message.content = ""
|
||||
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
yield LLMResultChunk(
|
||||
model=model_instance.model,
|
||||
prompt_messages=result.prompt_messages,
|
||||
system_fingerprint=result.system_fingerprint,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=result.message,
|
||||
usage=result.usage,
|
||||
),
|
||||
)
|
||||
|
||||
assistant_message = AssistantPromptMessage(content=response, tool_calls=[])
|
||||
if tool_calls:
|
||||
assistant_message.tool_calls = [
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id=tool_call[0],
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
|
||||
name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
|
||||
),
|
||||
)
|
||||
for tool_call in tool_calls
|
||||
]
|
||||
|
||||
self._current_thoughts.append(assistant_message)
|
||||
|
||||
# save thought
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name=tool_call_names,
|
||||
tool_input=tool_call_inputs,
|
||||
thought=response,
|
||||
tool_invoke_meta=None,
|
||||
observation=None,
|
||||
answer=response,
|
||||
messages_ids=[],
|
||||
llm_usage=current_llm_usage,
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
final_answer += response + "\n"
|
||||
|
||||
# Check if max iteration is reached and model still wants to call tools
|
||||
if iteration_step == max_iteration_steps and tool_calls:
|
||||
raise AgentMaxIterationError(app_config.agent.max_iteration)
|
||||
|
||||
# call tools
|
||||
tool_responses = []
|
||||
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
|
||||
tool_instance = tool_instances.get(tool_call_name)
|
||||
if not tool_instance:
|
||||
tool_response = {
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_call_name": tool_call_name,
|
||||
"tool_response": f"there is not a tool named {tool_call_name}",
|
||||
"meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
|
||||
}
|
||||
else:
|
||||
# invoke tool
|
||||
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
|
||||
tool=tool_instance,
|
||||
tool_parameters=tool_call_args,
|
||||
user_id=self.user_id,
|
||||
tenant_id=self.tenant_id,
|
||||
message=self.message,
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
agent_tool_callback=self.agent_callback,
|
||||
trace_manager=trace_manager,
|
||||
app_id=self.application_generate_entity.app_config.app_id,
|
||||
message_id=self.message.id,
|
||||
conversation_id=self.conversation.id,
|
||||
)
|
||||
# publish files
|
||||
for message_file_id in message_files:
|
||||
# publish message file
|
||||
self.queue_manager.publish(
|
||||
QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
# add message file ids
|
||||
message_file_ids.append(message_file_id)
|
||||
|
||||
tool_response = {
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_call_name": tool_call_name,
|
||||
"tool_response": tool_invoke_response,
|
||||
"meta": tool_invoke_meta.to_dict(),
|
||||
}
|
||||
|
||||
tool_responses.append(tool_response)
|
||||
if tool_response["tool_response"] is not None:
|
||||
self._current_thoughts.append(
|
||||
ToolPromptMessage(
|
||||
content=str(tool_response["tool_response"]),
|
||||
tool_call_id=tool_call_id,
|
||||
name=tool_call_name,
|
||||
)
|
||||
)
|
||||
|
||||
if len(tool_responses) > 0:
|
||||
# save agent thought
|
||||
self.save_agent_thought(
|
||||
agent_thought_id=agent_thought_id,
|
||||
tool_name="",
|
||||
tool_input="",
|
||||
thought="",
|
||||
tool_invoke_meta={
|
||||
tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
|
||||
},
|
||||
observation={
|
||||
tool_response["tool_call_name"]: tool_response["tool_response"]
|
||||
for tool_response in tool_responses
|
||||
},
|
||||
answer="",
|
||||
messages_ids=message_file_ids,
|
||||
)
|
||||
self.queue_manager.publish(
|
||||
QueueAgentThoughtEvent(agent_thought_id=agent_thought_id), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
# update prompt tool
|
||||
for prompt_tool in prompt_messages_tools:
|
||||
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
||||
|
||||
iteration_step += 1
|
||||
|
||||
# publish end event
|
||||
self.queue_manager.publish(
|
||||
QueueMessageEndEvent(
|
||||
llm_result=LLMResult(
|
||||
model=model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
message=AssistantPromptMessage(content=final_answer),
|
||||
usage=llm_usage["usage"] or LLMUsage.empty_usage(),
|
||||
system_fingerprint="",
|
||||
)
|
||||
),
|
||||
PublishFrom.APPLICATION_MANAGER,
|
||||
)
|
||||
|
||||
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
|
||||
"""
|
||||
Check if there is any tool call in llm result chunk
|
||||
"""
|
||||
if llm_result_chunk.delta.message.tool_calls:
|
||||
return True
|
||||
return False
|
||||
|
||||
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
|
||||
"""
|
||||
Check if there is any blocking tool call in llm result
|
||||
"""
|
||||
if llm_result.message.tool_calls:
|
||||
return True
|
||||
return False
|
||||
|
||||
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
|
||||
"""
|
||||
Extract tool calls from llm result chunk
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
|
||||
"""
|
||||
tool_calls = []
|
||||
for prompt_message in llm_result_chunk.delta.message.tool_calls:
|
||||
args = {}
|
||||
if prompt_message.function.arguments != "":
|
||||
args = json.loads(prompt_message.function.arguments)
|
||||
|
||||
tool_calls.append(
|
||||
(
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
args,
|
||||
)
|
||||
)
|
||||
|
||||
return tool_calls
|
||||
|
||||
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
|
||||
"""
|
||||
Extract blocking tool calls from llm result
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
|
||||
"""
|
||||
tool_calls = []
|
||||
for prompt_message in llm_result.message.tool_calls:
|
||||
args = {}
|
||||
if prompt_message.function.arguments != "":
|
||||
args = json.loads(prompt_message.function.arguments)
|
||||
|
||||
tool_calls.append(
|
||||
(
|
||||
prompt_message.id,
|
||||
prompt_message.function.name,
|
||||
args,
|
||||
)
|
||||
)
|
||||
|
||||
return tool_calls
|
||||
|
||||
def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Initialize system message
|
||||
"""
|
||||
if not prompt_messages and prompt_template:
|
||||
return [
|
||||
SystemPromptMessage(content=prompt_template),
|
||||
]
|
||||
|
||||
if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
|
||||
prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
|
||||
|
||||
return prompt_messages or []
|
||||
|
||||
def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
Organize user query
|
||||
"""
|
||||
if self.files:
|
||||
# get image detail config
|
||||
image_detail_config = (
|
||||
self.application_generate_entity.file_upload_config.image_config.detail
|
||||
if (
|
||||
self.application_generate_entity.file_upload_config
|
||||
and self.application_generate_entity.file_upload_config.image_config
|
||||
)
|
||||
else None
|
||||
)
|
||||
image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
|
||||
|
||||
prompt_message_contents: list[PromptMessageContentUnionTypes] = []
|
||||
for file in self.files:
|
||||
prompt_message_contents.append(
|
||||
file_manager.to_prompt_message_content(
|
||||
file,
|
||||
image_detail_config=image_detail_config,
|
||||
)
|
||||
)
|
||||
prompt_message_contents.append(TextPromptMessageContent(data=query))
|
||||
|
||||
prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
|
||||
else:
|
||||
prompt_messages.append(UserPromptMessage(content=query))
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
|
||||
"""
|
||||
As for now, gpt supports both fc and vision at the first iteration.
|
||||
We need to remove the image messages from the prompt messages at the first iteration.
|
||||
"""
|
||||
prompt_messages = deepcopy(prompt_messages)
|
||||
|
||||
for prompt_message in prompt_messages:
|
||||
if isinstance(prompt_message, UserPromptMessage):
|
||||
if isinstance(prompt_message.content, list):
|
||||
prompt_message.content = "\n".join(
|
||||
[
|
||||
content.data
|
||||
if content.type == PromptMessageContentType.TEXT
|
||||
else "[image]"
|
||||
if content.type == PromptMessageContentType.IMAGE
|
||||
else "[file]"
|
||||
for content in prompt_message.content
|
||||
]
|
||||
)
|
||||
|
||||
return prompt_messages
|
||||
|
||||
def _organize_prompt_messages(self):
|
||||
prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
|
||||
self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
|
||||
query_prompt_messages = self._organize_user_query(self.query or "", [])
|
||||
|
||||
self.history_prompt_messages = AgentHistoryPromptTransform(
|
||||
model_config=self.model_config,
|
||||
prompt_messages=[*query_prompt_messages, *self._current_thoughts],
|
||||
history_messages=self.history_prompt_messages,
|
||||
memory=self.memory,
|
||||
).get_prompt()
|
||||
|
||||
prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
|
||||
if len(self._current_thoughts) != 0:
|
||||
# clear messages after the first iteration
|
||||
prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
|
||||
return prompt_messages
|
||||
@@ -1,55 +0,0 @@
|
||||
# Agent Patterns
|
||||
|
||||
A unified agent pattern module that powers both Agent V2 workflow nodes and agent applications. Strategies share a common execution contract while adapting to model capabilities and tool availability.
|
||||
|
||||
## Overview
|
||||
|
||||
The module applies a strategy pattern around LLM/tool orchestration. `StrategyFactory` auto-selects the best implementation based on model features or an explicit agent strategy, and each strategy streams logs and usage consistently.
|
||||
|
||||
## Key Features
|
||||
|
||||
- **Dual strategies**
|
||||
- `FunctionCallStrategy`: uses native LLM function/tool calling when the model exposes `TOOL_CALL`, `MULTI_TOOL_CALL`, or `STREAM_TOOL_CALL`.
|
||||
- `ReActStrategy`: ReAct (reasoning + acting) flow driven by `CotAgentOutputParser`, used when function calling is unavailable or explicitly requested.
|
||||
- **Explicit or auto selection**
|
||||
- `StrategyFactory.create_strategy` prefers an explicit `AgentEntity.Strategy` (FUNCTION_CALLING or CHAIN_OF_THOUGHT).
|
||||
- Otherwise it falls back to function calling when tool-call features exist, or ReAct when they do not.
|
||||
- **Unified execution contract**
|
||||
- `AgentPattern.run` yields streaming `AgentLog` entries and `LLMResultChunk` data, returning an `AgentResult` with text, files, usage, and `finish_reason`.
|
||||
- Iterations are configurable and hard-capped at 99 rounds; the last round forces a final answer by withholding tools.
|
||||
- **Tool handling and hooks**
|
||||
- Tools convert to `PromptMessageTool` objects before invocation.
|
||||
- Optional `tool_invoke_hook` lets callers override tool execution (e.g., agent apps) while workflow runs use `ToolEngine.generic_invoke`.
|
||||
- Tool outputs support text, links, JSON, variables, blobs, retriever resources, and file attachments; `target=="self"` files are reloaded into model context, others are returned as outputs.
|
||||
- **File-aware arguments**
|
||||
- Tool args accept `[File: <id>]` or `[Files: <id1, id2>]` placeholders that resolve to `File` objects before invocation, enabling models to reference uploaded files safely.
|
||||
- **ReAct prompt shaping**
|
||||
- System prompts replace `{{instruction}}`, `{{tools}}`, and `{{tool_names}}` placeholders.
|
||||
- Adds `Observation` to stop sequences and appends scratchpad text so the model sees prior Thought/Action/Observation history.
|
||||
- **Observability and accounting**
|
||||
- Standardized `AgentLog` entries for rounds, model thoughts, and tool calls, including usage aggregation (`LLMUsage`) across streaming and non-streaming paths.
|
||||
|
||||
## Architecture
|
||||
|
||||
```
|
||||
agent/patterns/
|
||||
├── base.py # Shared utilities: logging, usage, tool invocation, file handling
|
||||
├── function_call.py # Native function-calling loop with tool execution
|
||||
├── react.py # ReAct loop with CoT parsing and scratchpad wiring
|
||||
└── strategy_factory.py # Strategy selection by model features or explicit override
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
- For auto-selection:
|
||||
- Call `StrategyFactory.create_strategy(model_features, model_instance, context, tools, files, ...)` and run the returned strategy with prompt messages and model params.
|
||||
- For explicit behavior:
|
||||
- Pass `agent_strategy=AgentEntity.Strategy.FUNCTION_CALLING` to force native calls (falls back to ReAct if unsupported), or `CHAIN_OF_THOUGHT` to force ReAct.
|
||||
- Both strategies stream chunks and logs; collect the generator output until it returns an `AgentResult`.
|
||||
|
||||
## Integration Points
|
||||
|
||||
- **Model runtime**: delegates to `ModelInstance.invoke_llm` for both streaming and non-streaming calls.
|
||||
- **Tool system**: defaults to `ToolEngine.generic_invoke`, with `tool_invoke_hook` for custom callers.
|
||||
- **Files**: flows through `File` objects for tool inputs/outputs and model-context attachments.
|
||||
- **Execution context**: `ExecutionContext` fields (user/app/conversation/message) propagate to tool invocations and logging.
|
||||
@@ -1,19 +0,0 @@
|
||||
"""Agent patterns module.
|
||||
|
||||
This module provides different strategies for agent execution:
|
||||
- FunctionCallStrategy: Uses native function/tool calling
|
||||
- ReActStrategy: Uses ReAct (Reasoning + Acting) approach
|
||||
- StrategyFactory: Factory for creating strategies based on model features
|
||||
"""
|
||||
|
||||
from .base import AgentPattern
|
||||
from .function_call import FunctionCallStrategy
|
||||
from .react import ReActStrategy
|
||||
from .strategy_factory import StrategyFactory
|
||||
|
||||
__all__ = [
|
||||
"AgentPattern",
|
||||
"FunctionCallStrategy",
|
||||
"ReActStrategy",
|
||||
"StrategyFactory",
|
||||
]
|
||||
@@ -1,474 +0,0 @@
|
||||
"""Base class for agent strategies."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import re
|
||||
import time
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Callable, Generator
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from core.agent.entities import AgentLog, AgentResult, ExecutionContext
|
||||
from core.file import File
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
LLMResult,
|
||||
LLMResultChunk,
|
||||
LLMResultChunkDelta,
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
)
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.model_runtime.entities.message_entities import TextPromptMessageContent
|
||||
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolInvokeMeta
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.tools.__base.tool import Tool
|
||||
|
||||
# Type alias for tool invoke hook
|
||||
# Returns: (response_content, message_file_ids, tool_invoke_meta)
|
||||
ToolInvokeHook = Callable[["Tool", dict[str, Any], str], tuple[str, list[str], ToolInvokeMeta]]
|
||||
|
||||
|
||||
class AgentPattern(ABC):
|
||||
"""Base class for agent execution strategies."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_instance: ModelInstance,
|
||||
tools: list[Tool],
|
||||
context: ExecutionContext,
|
||||
max_iterations: int = 10,
|
||||
workflow_call_depth: int = 0,
|
||||
files: list[File] = [],
|
||||
tool_invoke_hook: ToolInvokeHook | None = None,
|
||||
):
|
||||
"""Initialize the agent strategy."""
|
||||
self.model_instance = model_instance
|
||||
self.tools = tools
|
||||
self.context = context
|
||||
self.max_iterations = min(max_iterations, 99) # Cap at 99 iterations
|
||||
self.workflow_call_depth = workflow_call_depth
|
||||
self.files: list[File] = files
|
||||
self.tool_invoke_hook = tool_invoke_hook
|
||||
|
||||
@abstractmethod
|
||||
def run(
|
||||
self,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict[str, Any],
|
||||
stop: list[str] = [],
|
||||
stream: bool = True,
|
||||
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
|
||||
"""Execute the agent strategy."""
|
||||
pass
|
||||
|
||||
def _accumulate_usage(self, total_usage: dict[str, Any], delta_usage: LLMUsage) -> None:
|
||||
"""Accumulate LLM usage statistics."""
|
||||
if not total_usage.get("usage"):
|
||||
# Create a copy to avoid modifying the original
|
||||
total_usage["usage"] = LLMUsage(
|
||||
prompt_tokens=delta_usage.prompt_tokens,
|
||||
prompt_unit_price=delta_usage.prompt_unit_price,
|
||||
prompt_price_unit=delta_usage.prompt_price_unit,
|
||||
prompt_price=delta_usage.prompt_price,
|
||||
completion_tokens=delta_usage.completion_tokens,
|
||||
completion_unit_price=delta_usage.completion_unit_price,
|
||||
completion_price_unit=delta_usage.completion_price_unit,
|
||||
completion_price=delta_usage.completion_price,
|
||||
total_tokens=delta_usage.total_tokens,
|
||||
total_price=delta_usage.total_price,
|
||||
currency=delta_usage.currency,
|
||||
latency=delta_usage.latency,
|
||||
)
|
||||
else:
|
||||
current: LLMUsage = total_usage["usage"]
|
||||
current.prompt_tokens += delta_usage.prompt_tokens
|
||||
current.completion_tokens += delta_usage.completion_tokens
|
||||
current.total_tokens += delta_usage.total_tokens
|
||||
current.prompt_price += delta_usage.prompt_price
|
||||
current.completion_price += delta_usage.completion_price
|
||||
current.total_price += delta_usage.total_price
|
||||
|
||||
def _extract_content(self, content: Any) -> str:
|
||||
"""Extract text content from message content."""
|
||||
if isinstance(content, list):
|
||||
# Content items are PromptMessageContentUnionTypes
|
||||
text_parts = []
|
||||
for c in content:
|
||||
# Check if it's a TextPromptMessageContent (which has data attribute)
|
||||
if isinstance(c, TextPromptMessageContent):
|
||||
text_parts.append(c.data)
|
||||
return "".join(text_parts)
|
||||
return str(content)
|
||||
|
||||
def _has_tool_calls(self, chunk: LLMResultChunk) -> bool:
|
||||
"""Check if chunk contains tool calls."""
|
||||
# LLMResultChunk always has delta attribute
|
||||
return bool(chunk.delta.message and chunk.delta.message.tool_calls)
|
||||
|
||||
def _has_tool_calls_result(self, result: LLMResult) -> bool:
|
||||
"""Check if result contains tool calls (non-streaming)."""
|
||||
# LLMResult always has message attribute
|
||||
return bool(result.message and result.message.tool_calls)
|
||||
|
||||
def _extract_tool_calls(self, chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
|
||||
"""Extract tool calls from streaming chunk."""
|
||||
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
|
||||
if chunk.delta.message and chunk.delta.message.tool_calls:
|
||||
for tool_call in chunk.delta.message.tool_calls:
|
||||
if tool_call.function:
|
||||
try:
|
||||
args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
|
||||
except json.JSONDecodeError:
|
||||
args = {}
|
||||
tool_calls.append((tool_call.id or "", tool_call.function.name, args))
|
||||
return tool_calls
|
||||
|
||||
def _extract_tool_calls_result(self, result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
|
||||
"""Extract tool calls from non-streaming result."""
|
||||
tool_calls = []
|
||||
if result.message and result.message.tool_calls:
|
||||
for tool_call in result.message.tool_calls:
|
||||
if tool_call.function:
|
||||
try:
|
||||
args = json.loads(tool_call.function.arguments) if tool_call.function.arguments else {}
|
||||
except json.JSONDecodeError:
|
||||
args = {}
|
||||
tool_calls.append((tool_call.id or "", tool_call.function.name, args))
|
||||
return tool_calls
|
||||
|
||||
def _extract_text_from_message(self, message: PromptMessage) -> str:
|
||||
"""Extract text content from a prompt message."""
|
||||
# PromptMessage always has content attribute
|
||||
content = message.content
|
||||
if isinstance(content, str):
|
||||
return content
|
||||
elif isinstance(content, list):
|
||||
# Extract text from content list
|
||||
text_parts = []
|
||||
for item in content:
|
||||
if isinstance(item, TextPromptMessageContent):
|
||||
text_parts.append(item.data)
|
||||
return " ".join(text_parts)
|
||||
return ""
|
||||
|
||||
def _get_tool_metadata(self, tool_instance: Tool) -> dict[AgentLog.LogMetadata, Any]:
|
||||
"""Get metadata for a tool including provider and icon info."""
|
||||
from core.tools.tool_manager import ToolManager
|
||||
|
||||
metadata: dict[AgentLog.LogMetadata, Any] = {}
|
||||
if tool_instance.entity and tool_instance.entity.identity:
|
||||
identity = tool_instance.entity.identity
|
||||
if identity.provider:
|
||||
metadata[AgentLog.LogMetadata.PROVIDER] = identity.provider
|
||||
|
||||
# Get icon using ToolManager for proper URL generation
|
||||
tenant_id = self.context.tenant_id
|
||||
if tenant_id and identity.provider:
|
||||
try:
|
||||
provider_type = tool_instance.tool_provider_type()
|
||||
icon = ToolManager.get_tool_icon(tenant_id, provider_type, identity.provider)
|
||||
if isinstance(icon, str):
|
||||
metadata[AgentLog.LogMetadata.ICON] = icon
|
||||
elif isinstance(icon, dict):
|
||||
# Handle icon dict with background/content or light/dark variants
|
||||
metadata[AgentLog.LogMetadata.ICON] = icon
|
||||
except Exception:
|
||||
# Fallback to identity.icon if ToolManager fails
|
||||
if identity.icon:
|
||||
metadata[AgentLog.LogMetadata.ICON] = identity.icon
|
||||
elif identity.icon:
|
||||
metadata[AgentLog.LogMetadata.ICON] = identity.icon
|
||||
return metadata
|
||||
|
||||
def _create_log(
|
||||
self,
|
||||
label: str,
|
||||
log_type: AgentLog.LogType,
|
||||
status: AgentLog.LogStatus,
|
||||
data: dict[str, Any] | None = None,
|
||||
parent_id: str | None = None,
|
||||
extra_metadata: dict[AgentLog.LogMetadata, Any] | None = None,
|
||||
) -> AgentLog:
|
||||
"""Create a new AgentLog with standard metadata."""
|
||||
metadata: dict[AgentLog.LogMetadata, Any] = {
|
||||
AgentLog.LogMetadata.STARTED_AT: time.perf_counter(),
|
||||
}
|
||||
if extra_metadata:
|
||||
metadata.update(extra_metadata)
|
||||
|
||||
return AgentLog(
|
||||
label=label,
|
||||
log_type=log_type,
|
||||
status=status,
|
||||
data=data or {},
|
||||
parent_id=parent_id,
|
||||
metadata=metadata,
|
||||
)
|
||||
|
||||
def _finish_log(
|
||||
self,
|
||||
log: AgentLog,
|
||||
data: dict[str, Any] | None = None,
|
||||
usage: LLMUsage | None = None,
|
||||
) -> AgentLog:
|
||||
"""Finish an AgentLog by updating its status and metadata."""
|
||||
log.status = AgentLog.LogStatus.SUCCESS
|
||||
|
||||
if data is not None:
|
||||
log.data = data
|
||||
|
||||
# Calculate elapsed time
|
||||
started_at = log.metadata.get(AgentLog.LogMetadata.STARTED_AT, time.perf_counter())
|
||||
finished_at = time.perf_counter()
|
||||
|
||||
# Update metadata
|
||||
log.metadata = {
|
||||
**log.metadata,
|
||||
AgentLog.LogMetadata.FINISHED_AT: finished_at,
|
||||
# Calculate elapsed time in seconds
|
||||
AgentLog.LogMetadata.ELAPSED_TIME: round(finished_at - started_at, 4),
|
||||
}
|
||||
|
||||
# Add usage information if provided
|
||||
if usage:
|
||||
log.metadata.update(
|
||||
{
|
||||
AgentLog.LogMetadata.TOTAL_PRICE: usage.total_price,
|
||||
AgentLog.LogMetadata.CURRENCY: usage.currency,
|
||||
AgentLog.LogMetadata.TOTAL_TOKENS: usage.total_tokens,
|
||||
AgentLog.LogMetadata.LLM_USAGE: usage,
|
||||
}
|
||||
)
|
||||
|
||||
return log
|
||||
|
||||
def _replace_file_references(self, tool_args: dict[str, Any]) -> dict[str, Any]:
|
||||
"""
|
||||
Replace file references in tool arguments with actual File objects.
|
||||
|
||||
Args:
|
||||
tool_args: Dictionary of tool arguments
|
||||
|
||||
Returns:
|
||||
Updated tool arguments with file references replaced
|
||||
"""
|
||||
# Process each argument in the dictionary
|
||||
processed_args: dict[str, Any] = {}
|
||||
for key, value in tool_args.items():
|
||||
processed_args[key] = self._process_file_reference(value)
|
||||
return processed_args
|
||||
|
||||
def _process_file_reference(self, data: Any) -> Any:
|
||||
"""
|
||||
Recursively process data to replace file references.
|
||||
Supports both single file [File: file_id] and multiple files [Files: file_id1, file_id2, ...].
|
||||
|
||||
Args:
|
||||
data: The data to process (can be dict, list, str, or other types)
|
||||
|
||||
Returns:
|
||||
Processed data with file references replaced
|
||||
"""
|
||||
single_file_pattern = re.compile(r"^\[File:\s*([^\]]+)\]$")
|
||||
multiple_files_pattern = re.compile(r"^\[Files:\s*([^\]]+)\]$")
|
||||
|
||||
if isinstance(data, dict):
|
||||
# Process dictionary recursively
|
||||
return {key: self._process_file_reference(value) for key, value in data.items()}
|
||||
elif isinstance(data, list):
|
||||
# Process list recursively
|
||||
return [self._process_file_reference(item) for item in data]
|
||||
elif isinstance(data, str):
|
||||
# Check for single file pattern [File: file_id]
|
||||
single_match = single_file_pattern.match(data.strip())
|
||||
if single_match:
|
||||
file_id = single_match.group(1).strip()
|
||||
# Find the file in self.files
|
||||
for file in self.files:
|
||||
if file.id and str(file.id) == file_id:
|
||||
return file
|
||||
# If file not found, return original value
|
||||
return data
|
||||
|
||||
# Check for multiple files pattern [Files: file_id1, file_id2, ...]
|
||||
multiple_match = multiple_files_pattern.match(data.strip())
|
||||
if multiple_match:
|
||||
file_ids_str = multiple_match.group(1).strip()
|
||||
# Split by comma and strip whitespace
|
||||
file_ids = [fid.strip() for fid in file_ids_str.split(",")]
|
||||
|
||||
# Find all matching files
|
||||
matched_files: list[File] = []
|
||||
for file_id in file_ids:
|
||||
for file in self.files:
|
||||
if file.id and str(file.id) == file_id:
|
||||
matched_files.append(file)
|
||||
break
|
||||
|
||||
# Return list of files if any were found, otherwise return original
|
||||
return matched_files or data
|
||||
|
||||
return data
|
||||
else:
|
||||
# Return other types as-is
|
||||
return data
|
||||
|
||||
def _create_text_chunk(self, text: str, prompt_messages: list[PromptMessage]) -> LLMResultChunk:
|
||||
"""Create a text chunk for streaming."""
|
||||
return LLMResultChunk(
|
||||
model=self.model_instance.model,
|
||||
prompt_messages=prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=AssistantPromptMessage(content=text),
|
||||
usage=None,
|
||||
),
|
||||
system_fingerprint="",
|
||||
)
|
||||
|
||||
def _invoke_tool(
|
||||
self,
|
||||
tool_instance: Tool,
|
||||
tool_args: dict[str, Any],
|
||||
tool_name: str,
|
||||
) -> tuple[str, list[File], ToolInvokeMeta | None]:
|
||||
"""
|
||||
Invoke a tool and collect its response.
|
||||
|
||||
Args:
|
||||
tool_instance: The tool instance to invoke
|
||||
tool_args: Tool arguments
|
||||
tool_name: Name of the tool
|
||||
|
||||
Returns:
|
||||
Tuple of (response_content, tool_files, tool_invoke_meta)
|
||||
"""
|
||||
# Process tool_args to replace file references with actual File objects
|
||||
tool_args = self._replace_file_references(tool_args)
|
||||
|
||||
# If a tool invoke hook is set, use it instead of generic_invoke
|
||||
if self.tool_invoke_hook:
|
||||
response_content, _, tool_invoke_meta = self.tool_invoke_hook(tool_instance, tool_args, tool_name)
|
||||
# Note: message_file_ids are stored in DB, we don't convert them to File objects here
|
||||
# The caller (AgentAppRunner) handles file publishing
|
||||
return response_content, [], tool_invoke_meta
|
||||
|
||||
# Default: use generic_invoke for workflow scenarios
|
||||
# Import here to avoid circular import
|
||||
from core.tools.tool_engine import DifyWorkflowCallbackHandler, ToolEngine
|
||||
|
||||
tool_response = ToolEngine().generic_invoke(
|
||||
tool=tool_instance,
|
||||
tool_parameters=tool_args,
|
||||
user_id=self.context.user_id or "",
|
||||
workflow_tool_callback=DifyWorkflowCallbackHandler(),
|
||||
workflow_call_depth=self.workflow_call_depth,
|
||||
app_id=self.context.app_id,
|
||||
conversation_id=self.context.conversation_id,
|
||||
message_id=self.context.message_id,
|
||||
)
|
||||
|
||||
# Collect response and files
|
||||
response_content = ""
|
||||
tool_files: list[File] = []
|
||||
|
||||
for response in tool_response:
|
||||
if response.type == ToolInvokeMessage.MessageType.TEXT:
|
||||
assert isinstance(response.message, ToolInvokeMessage.TextMessage)
|
||||
response_content += response.message.text
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.LINK:
|
||||
# Handle link messages
|
||||
if isinstance(response.message, ToolInvokeMessage.TextMessage):
|
||||
response_content += f"[Link: {response.message.text}]"
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.IMAGE:
|
||||
# Handle image URL messages
|
||||
if isinstance(response.message, ToolInvokeMessage.TextMessage):
|
||||
response_content += f"[Image: {response.message.text}]"
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.IMAGE_LINK:
|
||||
# Handle image link messages
|
||||
if isinstance(response.message, ToolInvokeMessage.TextMessage):
|
||||
response_content += f"[Image: {response.message.text}]"
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.BINARY_LINK:
|
||||
# Handle binary file link messages
|
||||
if isinstance(response.message, ToolInvokeMessage.TextMessage):
|
||||
filename = response.meta.get("filename", "file") if response.meta else "file"
|
||||
response_content += f"[File: {filename} - {response.message.text}]"
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.JSON:
|
||||
# Handle JSON messages
|
||||
if isinstance(response.message, ToolInvokeMessage.JsonMessage):
|
||||
response_content += json.dumps(response.message.json_object, ensure_ascii=False, indent=2)
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.BLOB:
|
||||
# Handle blob messages - convert to text representation
|
||||
if isinstance(response.message, ToolInvokeMessage.BlobMessage):
|
||||
mime_type = (
|
||||
response.meta.get("mime_type", "application/octet-stream")
|
||||
if response.meta
|
||||
else "application/octet-stream"
|
||||
)
|
||||
size = len(response.message.blob)
|
||||
response_content += f"[Binary data: {mime_type}, size: {size} bytes]"
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.VARIABLE:
|
||||
# Handle variable messages
|
||||
if isinstance(response.message, ToolInvokeMessage.VariableMessage):
|
||||
var_name = response.message.variable_name
|
||||
var_value = response.message.variable_value
|
||||
if isinstance(var_value, str):
|
||||
response_content += var_value
|
||||
else:
|
||||
response_content += f"[Variable {var_name}: {json.dumps(var_value, ensure_ascii=False)}]"
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.BLOB_CHUNK:
|
||||
# Handle blob chunk messages - these are parts of a larger blob
|
||||
if isinstance(response.message, ToolInvokeMessage.BlobChunkMessage):
|
||||
response_content += f"[Blob chunk {response.message.sequence}: {len(response.message.blob)} bytes]"
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.RETRIEVER_RESOURCES:
|
||||
# Handle retriever resources messages
|
||||
if isinstance(response.message, ToolInvokeMessage.RetrieverResourceMessage):
|
||||
response_content += response.message.context
|
||||
|
||||
elif response.type == ToolInvokeMessage.MessageType.FILE:
|
||||
# Extract file from meta
|
||||
if response.meta and "file" in response.meta:
|
||||
file = response.meta["file"]
|
||||
if isinstance(file, File):
|
||||
# Check if file is for model or tool output
|
||||
if response.meta.get("target") == "self":
|
||||
# File is for model - add to files for next prompt
|
||||
self.files.append(file)
|
||||
response_content += f"File '{file.filename}' has been loaded into your context."
|
||||
else:
|
||||
# File is tool output
|
||||
tool_files.append(file)
|
||||
|
||||
return response_content, tool_files, None
|
||||
|
||||
def _find_tool_by_name(self, tool_name: str) -> Tool | None:
|
||||
"""Find a tool instance by its name."""
|
||||
for tool in self.tools:
|
||||
if tool.entity.identity.name == tool_name:
|
||||
return tool
|
||||
return None
|
||||
|
||||
def _convert_tools_to_prompt_format(self) -> list[PromptMessageTool]:
|
||||
"""Convert tools to prompt message format."""
|
||||
prompt_tools: list[PromptMessageTool] = []
|
||||
for tool in self.tools:
|
||||
prompt_tools.append(tool.to_prompt_message_tool())
|
||||
return prompt_tools
|
||||
|
||||
def _update_usage_with_empty(self, llm_usage: dict[str, Any]) -> None:
|
||||
"""Initialize usage tracking with empty usage if not set."""
|
||||
if "usage" not in llm_usage or llm_usage["usage"] is None:
|
||||
llm_usage["usage"] = LLMUsage.empty_usage()
|
||||
@@ -1,299 +0,0 @@
|
||||
"""Function Call strategy implementation."""
|
||||
|
||||
import json
|
||||
from collections.abc import Generator
|
||||
from typing import Any, Union
|
||||
|
||||
from core.agent.entities import AgentLog, AgentResult
|
||||
from core.file import File
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
LLMResult,
|
||||
LLMResultChunk,
|
||||
LLMResultChunkDelta,
|
||||
LLMUsage,
|
||||
PromptMessage,
|
||||
PromptMessageTool,
|
||||
ToolPromptMessage,
|
||||
)
|
||||
from core.tools.entities.tool_entities import ToolInvokeMeta
|
||||
|
||||
from .base import AgentPattern
|
||||
|
||||
|
||||
class FunctionCallStrategy(AgentPattern):
|
||||
"""Function Call strategy using model's native tool calling capability."""
|
||||
|
||||
def run(
|
||||
self,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict[str, Any],
|
||||
stop: list[str] = [],
|
||||
stream: bool = True,
|
||||
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
|
||||
"""Execute the function call agent strategy."""
|
||||
# Convert tools to prompt format
|
||||
prompt_tools: list[PromptMessageTool] = self._convert_tools_to_prompt_format()
|
||||
|
||||
# Initialize tracking
|
||||
iteration_step: int = 1
|
||||
max_iterations: int = self.max_iterations + 1
|
||||
function_call_state: bool = True
|
||||
total_usage: dict[str, LLMUsage | None] = {"usage": None}
|
||||
messages: list[PromptMessage] = list(prompt_messages) # Create mutable copy
|
||||
final_text: str = ""
|
||||
finish_reason: str | None = None
|
||||
output_files: list[File] = [] # Track files produced by tools
|
||||
|
||||
while function_call_state and iteration_step <= max_iterations:
|
||||
function_call_state = False
|
||||
round_log = self._create_log(
|
||||
label=f"ROUND {iteration_step}",
|
||||
log_type=AgentLog.LogType.ROUND,
|
||||
status=AgentLog.LogStatus.START,
|
||||
data={},
|
||||
)
|
||||
yield round_log
|
||||
# On last iteration, remove tools to force final answer
|
||||
current_tools: list[PromptMessageTool] = [] if iteration_step == max_iterations else prompt_tools
|
||||
model_log = self._create_log(
|
||||
label=f"{self.model_instance.model} Thought",
|
||||
log_type=AgentLog.LogType.THOUGHT,
|
||||
status=AgentLog.LogStatus.START,
|
||||
data={},
|
||||
parent_id=round_log.id,
|
||||
extra_metadata={
|
||||
AgentLog.LogMetadata.PROVIDER: self.model_instance.provider,
|
||||
},
|
||||
)
|
||||
yield model_log
|
||||
|
||||
# Track usage for this round only
|
||||
round_usage: dict[str, LLMUsage | None] = {"usage": None}
|
||||
|
||||
# Invoke model
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = self.model_instance.invoke_llm(
|
||||
prompt_messages=messages,
|
||||
model_parameters=model_parameters,
|
||||
tools=current_tools,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=self.context.user_id,
|
||||
callbacks=[],
|
||||
)
|
||||
|
||||
# Process response
|
||||
tool_calls, response_content, chunk_finish_reason = yield from self._handle_chunks(
|
||||
chunks, round_usage, model_log
|
||||
)
|
||||
messages.append(self._create_assistant_message(response_content, tool_calls))
|
||||
|
||||
# Accumulate to total usage
|
||||
round_usage_value = round_usage.get("usage")
|
||||
if round_usage_value:
|
||||
self._accumulate_usage(total_usage, round_usage_value)
|
||||
|
||||
# Update final text if no tool calls (this is likely the final answer)
|
||||
if not tool_calls:
|
||||
final_text = response_content
|
||||
|
||||
# Update finish reason
|
||||
if chunk_finish_reason:
|
||||
finish_reason = chunk_finish_reason
|
||||
|
||||
# Process tool calls
|
||||
tool_outputs: dict[str, str] = {}
|
||||
if tool_calls:
|
||||
function_call_state = True
|
||||
# Execute tools
|
||||
for tool_call_id, tool_name, tool_args in tool_calls:
|
||||
tool_response, tool_files, _ = yield from self._handle_tool_call(
|
||||
tool_name, tool_args, tool_call_id, messages, round_log
|
||||
)
|
||||
tool_outputs[tool_name] = tool_response
|
||||
# Track files produced by tools
|
||||
output_files.extend(tool_files)
|
||||
yield self._finish_log(
|
||||
round_log,
|
||||
data={
|
||||
"llm_result": response_content,
|
||||
"tool_calls": [
|
||||
{"name": tc[1], "args": tc[2], "output": tool_outputs.get(tc[1], "")} for tc in tool_calls
|
||||
]
|
||||
if tool_calls
|
||||
else [],
|
||||
"final_answer": final_text if not function_call_state else None,
|
||||
},
|
||||
usage=round_usage.get("usage"),
|
||||
)
|
||||
iteration_step += 1
|
||||
|
||||
# Return final result
|
||||
from core.agent.entities import AgentResult
|
||||
|
||||
return AgentResult(
|
||||
text=final_text,
|
||||
files=output_files,
|
||||
usage=total_usage.get("usage") or LLMUsage.empty_usage(),
|
||||
finish_reason=finish_reason,
|
||||
)
|
||||
|
||||
def _handle_chunks(
|
||||
self,
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult],
|
||||
llm_usage: dict[str, LLMUsage | None],
|
||||
start_log: AgentLog,
|
||||
) -> Generator[
|
||||
LLMResultChunk | AgentLog,
|
||||
None,
|
||||
tuple[list[tuple[str, str, dict[str, Any]]], str, str | None],
|
||||
]:
|
||||
"""Handle LLM response chunks and extract tool calls and content.
|
||||
|
||||
Returns a tuple of (tool_calls, response_content, finish_reason).
|
||||
"""
|
||||
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
|
||||
response_content: str = ""
|
||||
finish_reason: str | None = None
|
||||
if isinstance(chunks, Generator):
|
||||
# Streaming response
|
||||
for chunk in chunks:
|
||||
# Extract tool calls
|
||||
if self._has_tool_calls(chunk):
|
||||
tool_calls.extend(self._extract_tool_calls(chunk))
|
||||
|
||||
# Extract content
|
||||
if chunk.delta.message and chunk.delta.message.content:
|
||||
response_content += self._extract_content(chunk.delta.message.content)
|
||||
|
||||
# Track usage
|
||||
if chunk.delta.usage:
|
||||
self._accumulate_usage(llm_usage, chunk.delta.usage)
|
||||
|
||||
# Capture finish reason
|
||||
if chunk.delta.finish_reason:
|
||||
finish_reason = chunk.delta.finish_reason
|
||||
|
||||
yield chunk
|
||||
else:
|
||||
# Non-streaming response
|
||||
result: LLMResult = chunks
|
||||
|
||||
if self._has_tool_calls_result(result):
|
||||
tool_calls.extend(self._extract_tool_calls_result(result))
|
||||
|
||||
if result.message and result.message.content:
|
||||
response_content += self._extract_content(result.message.content)
|
||||
|
||||
if result.usage:
|
||||
self._accumulate_usage(llm_usage, result.usage)
|
||||
|
||||
# Convert to streaming format
|
||||
yield LLMResultChunk(
|
||||
model=result.model,
|
||||
prompt_messages=result.prompt_messages,
|
||||
delta=LLMResultChunkDelta(index=0, message=result.message, usage=result.usage),
|
||||
)
|
||||
yield self._finish_log(
|
||||
start_log,
|
||||
data={
|
||||
"result": response_content,
|
||||
},
|
||||
usage=llm_usage.get("usage"),
|
||||
)
|
||||
return tool_calls, response_content, finish_reason
|
||||
|
||||
def _create_assistant_message(
|
||||
self, content: str, tool_calls: list[tuple[str, str, dict[str, Any]]] | None = None
|
||||
) -> AssistantPromptMessage:
|
||||
"""Create assistant message with tool calls."""
|
||||
if tool_calls is None:
|
||||
return AssistantPromptMessage(content=content)
|
||||
return AssistantPromptMessage(
|
||||
content=content or "",
|
||||
tool_calls=[
|
||||
AssistantPromptMessage.ToolCall(
|
||||
id=tc[0],
|
||||
type="function",
|
||||
function=AssistantPromptMessage.ToolCall.ToolCallFunction(name=tc[1], arguments=json.dumps(tc[2])),
|
||||
)
|
||||
for tc in tool_calls
|
||||
],
|
||||
)
|
||||
|
||||
def _handle_tool_call(
|
||||
self,
|
||||
tool_name: str,
|
||||
tool_args: dict[str, Any],
|
||||
tool_call_id: str,
|
||||
messages: list[PromptMessage],
|
||||
round_log: AgentLog,
|
||||
) -> Generator[AgentLog, None, tuple[str, list[File], ToolInvokeMeta | None]]:
|
||||
"""Handle a single tool call and return response with files and meta."""
|
||||
# Find tool
|
||||
tool_instance = self._find_tool_by_name(tool_name)
|
||||
if not tool_instance:
|
||||
raise ValueError(f"Tool {tool_name} not found")
|
||||
|
||||
# Get tool metadata (provider, icon, etc.)
|
||||
tool_metadata = self._get_tool_metadata(tool_instance)
|
||||
|
||||
# Create tool call log
|
||||
tool_call_log = self._create_log(
|
||||
label=f"CALL {tool_name}",
|
||||
log_type=AgentLog.LogType.TOOL_CALL,
|
||||
status=AgentLog.LogStatus.START,
|
||||
data={
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_name": tool_name,
|
||||
"tool_args": tool_args,
|
||||
},
|
||||
parent_id=round_log.id,
|
||||
extra_metadata=tool_metadata,
|
||||
)
|
||||
yield tool_call_log
|
||||
|
||||
# Invoke tool using base class method with error handling
|
||||
try:
|
||||
response_content, tool_files, tool_invoke_meta = self._invoke_tool(tool_instance, tool_args, tool_name)
|
||||
|
||||
yield self._finish_log(
|
||||
tool_call_log,
|
||||
data={
|
||||
**tool_call_log.data,
|
||||
"output": response_content,
|
||||
"files": len(tool_files),
|
||||
"meta": tool_invoke_meta.to_dict() if tool_invoke_meta else None,
|
||||
},
|
||||
)
|
||||
final_content = response_content or "Tool executed successfully"
|
||||
# Add tool response to messages
|
||||
messages.append(
|
||||
ToolPromptMessage(
|
||||
content=final_content,
|
||||
tool_call_id=tool_call_id,
|
||||
name=tool_name,
|
||||
)
|
||||
)
|
||||
return response_content, tool_files, tool_invoke_meta
|
||||
except Exception as e:
|
||||
# Tool invocation failed, yield error log
|
||||
error_message = str(e)
|
||||
tool_call_log.status = AgentLog.LogStatus.ERROR
|
||||
tool_call_log.error = error_message
|
||||
tool_call_log.data = {
|
||||
**tool_call_log.data,
|
||||
"error": error_message,
|
||||
}
|
||||
yield tool_call_log
|
||||
|
||||
# Add error message to conversation
|
||||
error_content = f"Tool execution failed: {error_message}"
|
||||
messages.append(
|
||||
ToolPromptMessage(
|
||||
content=error_content,
|
||||
tool_call_id=tool_call_id,
|
||||
name=tool_name,
|
||||
)
|
||||
)
|
||||
return error_content, [], None
|
||||
@@ -1,418 +0,0 @@
|
||||
"""ReAct strategy implementation."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from collections.abc import Generator
|
||||
from typing import TYPE_CHECKING, Any, Union
|
||||
|
||||
from core.agent.entities import AgentLog, AgentResult, AgentScratchpadUnit, ExecutionContext
|
||||
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
|
||||
from core.file import File
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities import (
|
||||
AssistantPromptMessage,
|
||||
LLMResult,
|
||||
LLMResultChunk,
|
||||
LLMResultChunkDelta,
|
||||
PromptMessage,
|
||||
SystemPromptMessage,
|
||||
)
|
||||
|
||||
from .base import AgentPattern, ToolInvokeHook
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.tools.__base.tool import Tool
|
||||
|
||||
|
||||
class ReActStrategy(AgentPattern):
|
||||
"""ReAct strategy using reasoning and acting approach."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_instance: ModelInstance,
|
||||
tools: list[Tool],
|
||||
context: ExecutionContext,
|
||||
max_iterations: int = 10,
|
||||
workflow_call_depth: int = 0,
|
||||
files: list[File] = [],
|
||||
tool_invoke_hook: ToolInvokeHook | None = None,
|
||||
instruction: str = "",
|
||||
):
|
||||
"""Initialize the ReAct strategy with instruction support."""
|
||||
super().__init__(
|
||||
model_instance=model_instance,
|
||||
tools=tools,
|
||||
context=context,
|
||||
max_iterations=max_iterations,
|
||||
workflow_call_depth=workflow_call_depth,
|
||||
files=files,
|
||||
tool_invoke_hook=tool_invoke_hook,
|
||||
)
|
||||
self.instruction = instruction
|
||||
|
||||
def run(
|
||||
self,
|
||||
prompt_messages: list[PromptMessage],
|
||||
model_parameters: dict[str, Any],
|
||||
stop: list[str] = [],
|
||||
stream: bool = True,
|
||||
) -> Generator[LLMResultChunk | AgentLog, None, AgentResult]:
|
||||
"""Execute the ReAct agent strategy."""
|
||||
# Initialize tracking
|
||||
agent_scratchpad: list[AgentScratchpadUnit] = []
|
||||
iteration_step: int = 1
|
||||
max_iterations: int = self.max_iterations + 1
|
||||
react_state: bool = True
|
||||
total_usage: dict[str, Any] = {"usage": None}
|
||||
output_files: list[File] = [] # Track files produced by tools
|
||||
final_text: str = ""
|
||||
finish_reason: str | None = None
|
||||
|
||||
# Add "Observation" to stop sequences
|
||||
if "Observation" not in stop:
|
||||
stop = stop.copy()
|
||||
stop.append("Observation")
|
||||
|
||||
while react_state and iteration_step <= max_iterations:
|
||||
react_state = False
|
||||
round_log = self._create_log(
|
||||
label=f"ROUND {iteration_step}",
|
||||
log_type=AgentLog.LogType.ROUND,
|
||||
status=AgentLog.LogStatus.START,
|
||||
data={},
|
||||
)
|
||||
yield round_log
|
||||
|
||||
# Build prompt with/without tools based on iteration
|
||||
include_tools = iteration_step < max_iterations
|
||||
current_messages = self._build_prompt_with_react_format(
|
||||
prompt_messages, agent_scratchpad, include_tools, self.instruction
|
||||
)
|
||||
|
||||
model_log = self._create_log(
|
||||
label=f"{self.model_instance.model} Thought",
|
||||
log_type=AgentLog.LogType.THOUGHT,
|
||||
status=AgentLog.LogStatus.START,
|
||||
data={},
|
||||
parent_id=round_log.id,
|
||||
extra_metadata={
|
||||
AgentLog.LogMetadata.PROVIDER: self.model_instance.provider,
|
||||
},
|
||||
)
|
||||
yield model_log
|
||||
|
||||
# Track usage for this round only
|
||||
round_usage: dict[str, Any] = {"usage": None}
|
||||
|
||||
# Use current messages directly (files are handled by base class if needed)
|
||||
messages_to_use = current_messages
|
||||
|
||||
# Invoke model
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = self.model_instance.invoke_llm(
|
||||
prompt_messages=messages_to_use,
|
||||
model_parameters=model_parameters,
|
||||
stop=stop,
|
||||
stream=stream,
|
||||
user=self.context.user_id or "",
|
||||
callbacks=[],
|
||||
)
|
||||
|
||||
# Process response
|
||||
scratchpad, chunk_finish_reason = yield from self._handle_chunks(
|
||||
chunks, round_usage, model_log, current_messages
|
||||
)
|
||||
agent_scratchpad.append(scratchpad)
|
||||
|
||||
# Accumulate to total usage
|
||||
round_usage_value = round_usage.get("usage")
|
||||
if round_usage_value:
|
||||
self._accumulate_usage(total_usage, round_usage_value)
|
||||
|
||||
# Update finish reason
|
||||
if chunk_finish_reason:
|
||||
finish_reason = chunk_finish_reason
|
||||
|
||||
# Check if we have an action to execute
|
||||
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
|
||||
react_state = True
|
||||
# Execute tool
|
||||
observation, tool_files = yield from self._handle_tool_call(
|
||||
scratchpad.action, current_messages, round_log
|
||||
)
|
||||
scratchpad.observation = observation
|
||||
# Track files produced by tools
|
||||
output_files.extend(tool_files)
|
||||
|
||||
# Add observation to scratchpad for display
|
||||
yield self._create_text_chunk(f"\nObservation: {observation}\n", current_messages)
|
||||
else:
|
||||
# Extract final answer
|
||||
if scratchpad.action and scratchpad.action.action_input:
|
||||
final_answer = scratchpad.action.action_input
|
||||
if isinstance(final_answer, dict):
|
||||
final_answer = json.dumps(final_answer, ensure_ascii=False)
|
||||
final_text = str(final_answer)
|
||||
elif scratchpad.thought:
|
||||
# If no action but we have thought, use thought as final answer
|
||||
final_text = scratchpad.thought
|
||||
|
||||
yield self._finish_log(
|
||||
round_log,
|
||||
data={
|
||||
"thought": scratchpad.thought,
|
||||
"action": scratchpad.action_str if scratchpad.action else None,
|
||||
"observation": scratchpad.observation or None,
|
||||
"final_answer": final_text if not react_state else None,
|
||||
},
|
||||
usage=round_usage.get("usage"),
|
||||
)
|
||||
iteration_step += 1
|
||||
|
||||
# Return final result
|
||||
|
||||
from core.agent.entities import AgentResult
|
||||
|
||||
return AgentResult(
|
||||
text=final_text, files=output_files, usage=total_usage.get("usage"), finish_reason=finish_reason
|
||||
)
|
||||
|
||||
def _build_prompt_with_react_format(
|
||||
self,
|
||||
original_messages: list[PromptMessage],
|
||||
agent_scratchpad: list[AgentScratchpadUnit],
|
||||
include_tools: bool = True,
|
||||
instruction: str = "",
|
||||
) -> list[PromptMessage]:
|
||||
"""Build prompt messages with ReAct format."""
|
||||
# Copy messages to avoid modifying original
|
||||
messages = list(original_messages)
|
||||
|
||||
# Find and update the system prompt that should already exist
|
||||
system_prompt_found = False
|
||||
for i, msg in enumerate(messages):
|
||||
if isinstance(msg, SystemPromptMessage):
|
||||
system_prompt_found = True
|
||||
# The system prompt from frontend already has the template, just replace placeholders
|
||||
|
||||
# Format tools
|
||||
tools_str = ""
|
||||
tool_names = []
|
||||
if include_tools and self.tools:
|
||||
# Convert tools to prompt message tools format
|
||||
prompt_tools = [tool.to_prompt_message_tool() for tool in self.tools]
|
||||
tool_names = [tool.name for tool in prompt_tools]
|
||||
|
||||
# Format tools as JSON for comprehensive information
|
||||
from core.model_runtime.utils.encoders import jsonable_encoder
|
||||
|
||||
tools_str = json.dumps(jsonable_encoder(prompt_tools), indent=2)
|
||||
tool_names_str = ", ".join(f'"{name}"' for name in tool_names)
|
||||
else:
|
||||
tools_str = "No tools available"
|
||||
tool_names_str = ""
|
||||
|
||||
# Replace placeholders in the existing system prompt
|
||||
updated_content = msg.content
|
||||
assert isinstance(updated_content, str)
|
||||
updated_content = updated_content.replace("{{instruction}}", instruction)
|
||||
updated_content = updated_content.replace("{{tools}}", tools_str)
|
||||
updated_content = updated_content.replace("{{tool_names}}", tool_names_str)
|
||||
|
||||
# Create new SystemPromptMessage with updated content
|
||||
messages[i] = SystemPromptMessage(content=updated_content)
|
||||
break
|
||||
|
||||
# If no system prompt found, that's unexpected but add scratchpad anyway
|
||||
if not system_prompt_found:
|
||||
# This shouldn't happen if frontend is working correctly
|
||||
pass
|
||||
|
||||
# Format agent scratchpad
|
||||
scratchpad_str = ""
|
||||
if agent_scratchpad:
|
||||
scratchpad_parts: list[str] = []
|
||||
for unit in agent_scratchpad:
|
||||
if unit.thought:
|
||||
scratchpad_parts.append(f"Thought: {unit.thought}")
|
||||
if unit.action_str:
|
||||
scratchpad_parts.append(f"Action:\n```\n{unit.action_str}\n```")
|
||||
if unit.observation:
|
||||
scratchpad_parts.append(f"Observation: {unit.observation}")
|
||||
scratchpad_str = "\n".join(scratchpad_parts)
|
||||
|
||||
# If there's a scratchpad, append it to the last message
|
||||
if scratchpad_str:
|
||||
messages.append(AssistantPromptMessage(content=scratchpad_str))
|
||||
|
||||
return messages
|
||||
|
||||
def _handle_chunks(
|
||||
self,
|
||||
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult],
|
||||
llm_usage: dict[str, Any],
|
||||
model_log: AgentLog,
|
||||
current_messages: list[PromptMessage],
|
||||
) -> Generator[
|
||||
LLMResultChunk | AgentLog,
|
||||
None,
|
||||
tuple[AgentScratchpadUnit, str | None],
|
||||
]:
|
||||
"""Handle LLM response chunks and extract action/thought.
|
||||
|
||||
Returns a tuple of (scratchpad_unit, finish_reason).
|
||||
"""
|
||||
usage_dict: dict[str, Any] = {}
|
||||
|
||||
# Convert non-streaming to streaming format if needed
|
||||
if isinstance(chunks, LLMResult):
|
||||
# Create a generator from the LLMResult
|
||||
def result_to_chunks() -> Generator[LLMResultChunk, None, None]:
|
||||
yield LLMResultChunk(
|
||||
model=chunks.model,
|
||||
prompt_messages=chunks.prompt_messages,
|
||||
delta=LLMResultChunkDelta(
|
||||
index=0,
|
||||
message=chunks.message,
|
||||
usage=chunks.usage,
|
||||
finish_reason=None, # LLMResult doesn't have finish_reason, only streaming chunks do
|
||||
),
|
||||
system_fingerprint=chunks.system_fingerprint or "",
|
||||
)
|
||||
|
||||
streaming_chunks = result_to_chunks()
|
||||
else:
|
||||
streaming_chunks = chunks
|
||||
|
||||
react_chunks = CotAgentOutputParser.handle_react_stream_output(streaming_chunks, usage_dict)
|
||||
|
||||
# Initialize scratchpad unit
|
||||
scratchpad = AgentScratchpadUnit(
|
||||
agent_response="",
|
||||
thought="",
|
||||
action_str="",
|
||||
observation="",
|
||||
action=None,
|
||||
)
|
||||
|
||||
finish_reason: str | None = None
|
||||
|
||||
# Process chunks
|
||||
for chunk in react_chunks:
|
||||
if isinstance(chunk, AgentScratchpadUnit.Action):
|
||||
# Action detected
|
||||
action_str = json.dumps(chunk.model_dump())
|
||||
scratchpad.agent_response = (scratchpad.agent_response or "") + action_str
|
||||
scratchpad.action_str = action_str
|
||||
scratchpad.action = chunk
|
||||
|
||||
yield self._create_text_chunk(json.dumps(chunk.model_dump()), current_messages)
|
||||
else:
|
||||
# Text chunk
|
||||
chunk_text = str(chunk)
|
||||
scratchpad.agent_response = (scratchpad.agent_response or "") + chunk_text
|
||||
scratchpad.thought = (scratchpad.thought or "") + chunk_text
|
||||
|
||||
yield self._create_text_chunk(chunk_text, current_messages)
|
||||
|
||||
# Update usage
|
||||
if usage_dict.get("usage"):
|
||||
if llm_usage.get("usage"):
|
||||
self._accumulate_usage(llm_usage, usage_dict["usage"])
|
||||
else:
|
||||
llm_usage["usage"] = usage_dict["usage"]
|
||||
|
||||
# Clean up thought
|
||||
scratchpad.thought = (scratchpad.thought or "").strip() or "I am thinking about how to help you"
|
||||
|
||||
# Finish model log
|
||||
yield self._finish_log(
|
||||
model_log,
|
||||
data={
|
||||
"thought": scratchpad.thought,
|
||||
"action": scratchpad.action_str if scratchpad.action else None,
|
||||
},
|
||||
usage=llm_usage.get("usage"),
|
||||
)
|
||||
|
||||
return scratchpad, finish_reason
|
||||
|
||||
def _handle_tool_call(
|
||||
self,
|
||||
action: AgentScratchpadUnit.Action,
|
||||
prompt_messages: list[PromptMessage],
|
||||
round_log: AgentLog,
|
||||
) -> Generator[AgentLog, None, tuple[str, list[File]]]:
|
||||
"""Handle tool call and return observation with files."""
|
||||
tool_name = action.action_name
|
||||
tool_args: dict[str, Any] | str = action.action_input
|
||||
|
||||
# Find tool instance first to get metadata
|
||||
tool_instance = self._find_tool_by_name(tool_name)
|
||||
tool_metadata = self._get_tool_metadata(tool_instance) if tool_instance else {}
|
||||
|
||||
# Start tool log with tool metadata
|
||||
tool_log = self._create_log(
|
||||
label=f"CALL {tool_name}",
|
||||
log_type=AgentLog.LogType.TOOL_CALL,
|
||||
status=AgentLog.LogStatus.START,
|
||||
data={
|
||||
"tool_name": tool_name,
|
||||
"tool_args": tool_args,
|
||||
},
|
||||
parent_id=round_log.id,
|
||||
extra_metadata=tool_metadata,
|
||||
)
|
||||
yield tool_log
|
||||
|
||||
if not tool_instance:
|
||||
# Finish tool log with error
|
||||
yield self._finish_log(
|
||||
tool_log,
|
||||
data={
|
||||
**tool_log.data,
|
||||
"error": f"Tool {tool_name} not found",
|
||||
},
|
||||
)
|
||||
return f"Tool {tool_name} not found", []
|
||||
|
||||
# Ensure tool_args is a dict
|
||||
tool_args_dict: dict[str, Any]
|
||||
if isinstance(tool_args, str):
|
||||
try:
|
||||
tool_args_dict = json.loads(tool_args)
|
||||
except json.JSONDecodeError:
|
||||
tool_args_dict = {"input": tool_args}
|
||||
elif not isinstance(tool_args, dict):
|
||||
tool_args_dict = {"input": str(tool_args)}
|
||||
else:
|
||||
tool_args_dict = tool_args
|
||||
|
||||
# Invoke tool using base class method with error handling
|
||||
try:
|
||||
response_content, tool_files, tool_invoke_meta = self._invoke_tool(tool_instance, tool_args_dict, tool_name)
|
||||
|
||||
# Finish tool log
|
||||
yield self._finish_log(
|
||||
tool_log,
|
||||
data={
|
||||
**tool_log.data,
|
||||
"output": response_content,
|
||||
"files": len(tool_files),
|
||||
"meta": tool_invoke_meta.to_dict() if tool_invoke_meta else None,
|
||||
},
|
||||
)
|
||||
|
||||
return response_content or "Tool executed successfully", tool_files
|
||||
except Exception as e:
|
||||
# Tool invocation failed, yield error log
|
||||
error_message = str(e)
|
||||
tool_log.status = AgentLog.LogStatus.ERROR
|
||||
tool_log.error = error_message
|
||||
tool_log.data = {
|
||||
**tool_log.data,
|
||||
"error": error_message,
|
||||
}
|
||||
yield tool_log
|
||||
|
||||
return f"Tool execution failed: {error_message}", []
|
||||
@@ -1,107 +0,0 @@
|
||||
"""Strategy factory for creating agent strategies."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from core.agent.entities import AgentEntity, ExecutionContext
|
||||
from core.file.models import File
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
|
||||
from .base import AgentPattern, ToolInvokeHook
|
||||
from .function_call import FunctionCallStrategy
|
||||
from .react import ReActStrategy
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from core.tools.__base.tool import Tool
|
||||
|
||||
|
||||
class StrategyFactory:
|
||||
"""Factory for creating agent strategies based on model features."""
|
||||
|
||||
# Tool calling related features
|
||||
TOOL_CALL_FEATURES = {ModelFeature.TOOL_CALL, ModelFeature.MULTI_TOOL_CALL, ModelFeature.STREAM_TOOL_CALL}
|
||||
|
||||
@staticmethod
|
||||
def create_strategy(
|
||||
model_features: list[ModelFeature],
|
||||
model_instance: ModelInstance,
|
||||
context: ExecutionContext,
|
||||
tools: list[Tool],
|
||||
files: list[File],
|
||||
max_iterations: int = 10,
|
||||
workflow_call_depth: int = 0,
|
||||
agent_strategy: AgentEntity.Strategy | None = None,
|
||||
tool_invoke_hook: ToolInvokeHook | None = None,
|
||||
instruction: str = "",
|
||||
) -> AgentPattern:
|
||||
"""
|
||||
Create an appropriate strategy based on model features.
|
||||
|
||||
Args:
|
||||
model_features: List of model features/capabilities
|
||||
model_instance: Model instance to use
|
||||
context: Execution context containing trace/audit information
|
||||
tools: Available tools
|
||||
files: Available files
|
||||
max_iterations: Maximum iterations for the strategy
|
||||
workflow_call_depth: Depth of workflow calls
|
||||
agent_strategy: Optional explicit strategy override
|
||||
tool_invoke_hook: Optional hook for custom tool invocation (e.g., agent_invoke)
|
||||
instruction: Optional instruction for ReAct strategy
|
||||
|
||||
Returns:
|
||||
AgentStrategy instance
|
||||
"""
|
||||
# If explicit strategy is provided and it's Function Calling, try to use it if supported
|
||||
if agent_strategy == AgentEntity.Strategy.FUNCTION_CALLING:
|
||||
if set(model_features) & StrategyFactory.TOOL_CALL_FEATURES:
|
||||
return FunctionCallStrategy(
|
||||
model_instance=model_instance,
|
||||
context=context,
|
||||
tools=tools,
|
||||
files=files,
|
||||
max_iterations=max_iterations,
|
||||
workflow_call_depth=workflow_call_depth,
|
||||
tool_invoke_hook=tool_invoke_hook,
|
||||
)
|
||||
# Fallback to ReAct if FC is requested but not supported
|
||||
|
||||
# If explicit strategy is Chain of Thought (ReAct)
|
||||
if agent_strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
|
||||
return ReActStrategy(
|
||||
model_instance=model_instance,
|
||||
context=context,
|
||||
tools=tools,
|
||||
files=files,
|
||||
max_iterations=max_iterations,
|
||||
workflow_call_depth=workflow_call_depth,
|
||||
tool_invoke_hook=tool_invoke_hook,
|
||||
instruction=instruction,
|
||||
)
|
||||
|
||||
# Default auto-selection logic
|
||||
if set(model_features) & StrategyFactory.TOOL_CALL_FEATURES:
|
||||
# Model supports native function calling
|
||||
return FunctionCallStrategy(
|
||||
model_instance=model_instance,
|
||||
context=context,
|
||||
tools=tools,
|
||||
files=files,
|
||||
max_iterations=max_iterations,
|
||||
workflow_call_depth=workflow_call_depth,
|
||||
tool_invoke_hook=tool_invoke_hook,
|
||||
)
|
||||
else:
|
||||
# Use ReAct strategy for models without function calling
|
||||
return ReActStrategy(
|
||||
model_instance=model_instance,
|
||||
context=context,
|
||||
tools=tools,
|
||||
files=files,
|
||||
max_iterations=max_iterations,
|
||||
workflow_call_depth=workflow_call_depth,
|
||||
tool_invoke_hook=tool_invoke_hook,
|
||||
instruction=instruction,
|
||||
)
|
||||
@@ -1,4 +1,3 @@
|
||||
import json
|
||||
from collections.abc import Sequence
|
||||
from enum import StrEnum, auto
|
||||
from typing import Any, Literal
|
||||
@@ -121,7 +120,7 @@ class VariableEntity(BaseModel):
|
||||
allowed_file_types: Sequence[FileType] | None = Field(default_factory=list)
|
||||
allowed_file_extensions: Sequence[str] | None = Field(default_factory=list)
|
||||
allowed_file_upload_methods: Sequence[FileTransferMethod] | None = Field(default_factory=list)
|
||||
json_schema: str | None = Field(default=None)
|
||||
json_schema: dict | None = Field(default=None)
|
||||
|
||||
@field_validator("description", mode="before")
|
||||
@classmethod
|
||||
@@ -135,17 +134,11 @@ class VariableEntity(BaseModel):
|
||||
|
||||
@field_validator("json_schema")
|
||||
@classmethod
|
||||
def validate_json_schema(cls, schema: str | None) -> str | None:
|
||||
def validate_json_schema(cls, schema: dict | None) -> dict | None:
|
||||
if schema is None:
|
||||
return None
|
||||
|
||||
try:
|
||||
json_schema = json.loads(schema)
|
||||
except json.JSONDecodeError:
|
||||
raise ValueError(f"invalid json_schema value {schema}")
|
||||
|
||||
try:
|
||||
Draft7Validator.check_schema(json_schema)
|
||||
Draft7Validator.check_schema(schema)
|
||||
except SchemaError as e:
|
||||
raise ValueError(f"Invalid JSON schema: {e.message}")
|
||||
return schema
|
||||
|
||||
@@ -26,7 +26,6 @@ class AdvancedChatAppConfigManager(BaseAppConfigManager):
|
||||
@classmethod
|
||||
def get_app_config(cls, app_model: App, workflow: Workflow) -> AdvancedChatAppConfig:
|
||||
features_dict = workflow.features_dict
|
||||
|
||||
app_mode = AppMode.value_of(app_model.mode)
|
||||
app_config = AdvancedChatAppConfig(
|
||||
tenant_id=app_model.tenant_id,
|
||||
|
||||
@@ -24,7 +24,7 @@ from core.app.layers.conversation_variable_persist_layer import ConversationVari
|
||||
from core.db.session_factory import session_factory
|
||||
from core.moderation.base import ModerationError
|
||||
from core.moderation.input_moderation import InputModeration
|
||||
from core.variables.variables import VariableUnion
|
||||
from core.variables.variables import Variable
|
||||
from core.workflow.enums import WorkflowType
|
||||
from core.workflow.graph_engine.command_channels.redis_channel import RedisChannel
|
||||
from core.workflow.graph_engine.layers.base import GraphEngineLayer
|
||||
@@ -39,7 +39,6 @@ from extensions.ext_database import db
|
||||
from extensions.ext_redis import redis_client
|
||||
from extensions.otel import WorkflowAppRunnerHandler, trace_span
|
||||
from models import Workflow
|
||||
from models.enums import UserFrom
|
||||
from models.model import App, Conversation, Message, MessageAnnotation
|
||||
from models.workflow import ConversationVariable
|
||||
from services.conversation_variable_updater import ConversationVariableUpdater
|
||||
@@ -106,6 +105,11 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
|
||||
if not app_record:
|
||||
raise ValueError("App not found")
|
||||
|
||||
invoke_from = self.application_generate_entity.invoke_from
|
||||
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
|
||||
invoke_from = InvokeFrom.DEBUGGER
|
||||
user_from = self._resolve_user_from(invoke_from)
|
||||
|
||||
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
|
||||
# Handle single iteration or single loop run
|
||||
graph, variable_pool, graph_runtime_state = self._prepare_single_node_execution(
|
||||
@@ -145,8 +149,8 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
|
||||
system_variables=system_inputs,
|
||||
user_inputs=inputs,
|
||||
environment_variables=self._workflow.environment_variables,
|
||||
# Based on the definition of `VariableUnion`,
|
||||
# `list[Variable]` can be safely used as `list[VariableUnion]` since they are compatible.
|
||||
# Based on the definition of `Variable`,
|
||||
# `VariableBase` instances can be safely used as `Variable` since they are compatible.
|
||||
conversation_variables=conversation_variables,
|
||||
)
|
||||
|
||||
@@ -158,6 +162,8 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
|
||||
workflow_id=self._workflow.id,
|
||||
tenant_id=self._workflow.tenant_id,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=user_from,
|
||||
invoke_from=invoke_from,
|
||||
)
|
||||
|
||||
db.session.close()
|
||||
@@ -175,12 +181,8 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
|
||||
graph=graph,
|
||||
graph_config=self._workflow.graph_dict,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=(
|
||||
UserFrom.ACCOUNT
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
else UserFrom.END_USER
|
||||
),
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
user_from=user_from,
|
||||
invoke_from=invoke_from,
|
||||
call_depth=self.application_generate_entity.call_depth,
|
||||
variable_pool=variable_pool,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
@@ -316,7 +318,7 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
|
||||
trace_manager=app_generate_entity.trace_manager,
|
||||
)
|
||||
|
||||
def _initialize_conversation_variables(self) -> list[VariableUnion]:
|
||||
def _initialize_conversation_variables(self) -> list[Variable]:
|
||||
"""
|
||||
Initialize conversation variables for the current conversation.
|
||||
|
||||
@@ -341,7 +343,7 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
|
||||
conversation_variables = [var.to_variable() for var in existing_variables]
|
||||
|
||||
session.commit()
|
||||
return cast(list[VariableUnion], conversation_variables)
|
||||
return cast(list[Variable], conversation_variables)
|
||||
|
||||
def _load_existing_conversation_variables(self, session: Session) -> list[ConversationVariable]:
|
||||
"""
|
||||
|
||||
@@ -4,7 +4,6 @@ import re
|
||||
import time
|
||||
from collections.abc import Callable, Generator, Mapping
|
||||
from contextlib import contextmanager
|
||||
from dataclasses import dataclass, field
|
||||
from threading import Thread
|
||||
from typing import Any, Union
|
||||
|
||||
@@ -20,7 +19,6 @@ from core.app.entities.app_invoke_entities import (
|
||||
InvokeFrom,
|
||||
)
|
||||
from core.app.entities.queue_entities import (
|
||||
ChunkType,
|
||||
MessageQueueMessage,
|
||||
QueueAdvancedChatMessageEndEvent,
|
||||
QueueAgentLogEvent,
|
||||
@@ -72,122 +70,13 @@ from core.workflow.runtime import GraphRuntimeState
|
||||
from core.workflow.system_variable import SystemVariable
|
||||
from extensions.ext_database import db
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models import Account, Conversation, EndUser, LLMGenerationDetail, Message, MessageFile
|
||||
from models import Account, Conversation, EndUser, Message, MessageFile
|
||||
from models.enums import CreatorUserRole
|
||||
from models.workflow import Workflow
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class StreamEventBuffer:
|
||||
"""
|
||||
Buffer for recording stream events in order to reconstruct the generation sequence.
|
||||
Records the exact order of text chunks, thoughts, and tool calls as they stream.
|
||||
"""
|
||||
|
||||
# Accumulated reasoning content (each thought block is a separate element)
|
||||
reasoning_content: list[str] = field(default_factory=list)
|
||||
# Current reasoning buffer (accumulates until we see a different event type)
|
||||
_current_reasoning: str = ""
|
||||
# Tool calls with their details
|
||||
tool_calls: list[dict] = field(default_factory=list)
|
||||
# Tool call ID to index mapping for updating results
|
||||
_tool_call_id_map: dict[str, int] = field(default_factory=dict)
|
||||
# Sequence of events in stream order
|
||||
sequence: list[dict] = field(default_factory=list)
|
||||
# Current position in answer text
|
||||
_content_position: int = 0
|
||||
# Track last event type to detect transitions
|
||||
_last_event_type: str | None = None
|
||||
|
||||
def _flush_current_reasoning(self) -> None:
|
||||
"""Flush accumulated reasoning to the list and add to sequence."""
|
||||
if self._current_reasoning.strip():
|
||||
self.reasoning_content.append(self._current_reasoning.strip())
|
||||
self.sequence.append({"type": "reasoning", "index": len(self.reasoning_content) - 1})
|
||||
self._current_reasoning = ""
|
||||
|
||||
def record_text_chunk(self, text: str) -> None:
|
||||
"""Record a text chunk event."""
|
||||
if not text:
|
||||
return
|
||||
|
||||
# Flush any pending reasoning first
|
||||
if self._last_event_type == "thought":
|
||||
self._flush_current_reasoning()
|
||||
|
||||
text_len = len(text)
|
||||
start_pos = self._content_position
|
||||
|
||||
# If last event was also content, extend it; otherwise create new
|
||||
if self.sequence and self.sequence[-1].get("type") == "content":
|
||||
self.sequence[-1]["end"] = start_pos + text_len
|
||||
else:
|
||||
self.sequence.append({"type": "content", "start": start_pos, "end": start_pos + text_len})
|
||||
|
||||
self._content_position += text_len
|
||||
self._last_event_type = "content"
|
||||
|
||||
def record_thought_chunk(self, text: str) -> None:
|
||||
"""Record a thought/reasoning chunk event."""
|
||||
if not text:
|
||||
return
|
||||
|
||||
# Accumulate thought content
|
||||
self._current_reasoning += text
|
||||
self._last_event_type = "thought"
|
||||
|
||||
def record_tool_call(self, tool_call_id: str, tool_name: str, tool_arguments: str) -> None:
|
||||
"""Record a tool call event."""
|
||||
if not tool_call_id:
|
||||
return
|
||||
|
||||
# Flush any pending reasoning first
|
||||
if self._last_event_type == "thought":
|
||||
self._flush_current_reasoning()
|
||||
|
||||
# Check if this tool call already exists (we might get multiple chunks)
|
||||
if tool_call_id in self._tool_call_id_map:
|
||||
idx = self._tool_call_id_map[tool_call_id]
|
||||
# Update arguments if provided
|
||||
if tool_arguments:
|
||||
self.tool_calls[idx]["arguments"] = tool_arguments
|
||||
else:
|
||||
# New tool call
|
||||
tool_call = {
|
||||
"id": tool_call_id or "",
|
||||
"name": tool_name or "",
|
||||
"arguments": tool_arguments or "",
|
||||
"result": "",
|
||||
"elapsed_time": None,
|
||||
}
|
||||
self.tool_calls.append(tool_call)
|
||||
idx = len(self.tool_calls) - 1
|
||||
self._tool_call_id_map[tool_call_id] = idx
|
||||
self.sequence.append({"type": "tool_call", "index": idx})
|
||||
|
||||
self._last_event_type = "tool_call"
|
||||
|
||||
def record_tool_result(self, tool_call_id: str, result: str, tool_elapsed_time: float | None = None) -> None:
|
||||
"""Record a tool result event (update existing tool call)."""
|
||||
if not tool_call_id:
|
||||
return
|
||||
if tool_call_id in self._tool_call_id_map:
|
||||
idx = self._tool_call_id_map[tool_call_id]
|
||||
self.tool_calls[idx]["result"] = result
|
||||
self.tool_calls[idx]["elapsed_time"] = tool_elapsed_time
|
||||
|
||||
def finalize(self) -> None:
|
||||
"""Finalize the buffer, flushing any pending data."""
|
||||
if self._last_event_type == "thought":
|
||||
self._flush_current_reasoning()
|
||||
|
||||
def has_data(self) -> bool:
|
||||
"""Check if there's any meaningful data recorded."""
|
||||
return bool(self.reasoning_content or self.tool_calls or self.sequence)
|
||||
|
||||
|
||||
class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
"""
|
||||
AdvancedChatAppGenerateTaskPipeline is a class that generate stream output and state management for Application.
|
||||
@@ -255,8 +144,6 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
self._workflow_run_id: str = ""
|
||||
self._draft_var_saver_factory = draft_var_saver_factory
|
||||
self._graph_runtime_state: GraphRuntimeState | None = None
|
||||
# Stream event buffer for recording generation sequence
|
||||
self._stream_buffer = StreamEventBuffer()
|
||||
self._seed_graph_runtime_state_from_queue_manager()
|
||||
|
||||
def process(self) -> Union[ChatbotAppBlockingResponse, Generator[ChatbotAppStreamResponse, None, None]]:
|
||||
@@ -471,25 +358,6 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
if node_finish_resp:
|
||||
yield node_finish_resp
|
||||
|
||||
# For ANSWER nodes, check if we need to send a message_replace event
|
||||
# Only send if the final output differs from the accumulated task_state.answer
|
||||
# This happens when variables were updated by variable_assigner during workflow execution
|
||||
if event.node_type == NodeType.ANSWER and event.outputs:
|
||||
final_answer = event.outputs.get("answer")
|
||||
if final_answer is not None and final_answer != self._task_state.answer:
|
||||
logger.info(
|
||||
"ANSWER node final output '%s' differs from accumulated answer '%s', sending message_replace event",
|
||||
final_answer,
|
||||
self._task_state.answer,
|
||||
)
|
||||
# Update the task state answer
|
||||
self._task_state.answer = str(final_answer)
|
||||
# Send message_replace event to update the UI
|
||||
yield self._message_cycle_manager.message_replace_to_stream_response(
|
||||
answer=str(final_answer),
|
||||
reason="variable_update",
|
||||
)
|
||||
|
||||
def _handle_node_failed_events(
|
||||
self,
|
||||
event: Union[QueueNodeFailedEvent, QueueNodeExceptionEvent],
|
||||
@@ -515,7 +383,7 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
queue_message: Union[WorkflowQueueMessage, MessageQueueMessage] | None = None,
|
||||
**kwargs,
|
||||
) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle text chunk events and record to stream buffer for sequence reconstruction."""
|
||||
"""Handle text chunk events."""
|
||||
delta_text = event.text
|
||||
if delta_text is None:
|
||||
return
|
||||
@@ -537,52 +405,9 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
if tts_publisher and queue_message:
|
||||
tts_publisher.publish(queue_message)
|
||||
|
||||
tool_call = event.tool_call
|
||||
tool_result = event.tool_result
|
||||
tool_payload = tool_call or tool_result
|
||||
tool_call_id = tool_payload.id if tool_payload and tool_payload.id else ""
|
||||
tool_name = tool_payload.name if tool_payload and tool_payload.name else ""
|
||||
tool_arguments = tool_call.arguments if tool_call and tool_call.arguments else ""
|
||||
tool_files = tool_result.files if tool_result else []
|
||||
tool_elapsed_time = tool_result.elapsed_time if tool_result else None
|
||||
tool_icon = tool_payload.icon if tool_payload else None
|
||||
tool_icon_dark = tool_payload.icon_dark if tool_payload else None
|
||||
# Record stream event based on chunk type
|
||||
chunk_type = event.chunk_type or ChunkType.TEXT
|
||||
match chunk_type:
|
||||
case ChunkType.TEXT:
|
||||
self._stream_buffer.record_text_chunk(delta_text)
|
||||
self._task_state.answer += delta_text
|
||||
case ChunkType.THOUGHT:
|
||||
# Reasoning should not be part of final answer text
|
||||
self._stream_buffer.record_thought_chunk(delta_text)
|
||||
case ChunkType.TOOL_CALL:
|
||||
self._stream_buffer.record_tool_call(
|
||||
tool_call_id=tool_call_id,
|
||||
tool_name=tool_name,
|
||||
tool_arguments=tool_arguments,
|
||||
)
|
||||
case ChunkType.TOOL_RESULT:
|
||||
self._stream_buffer.record_tool_result(
|
||||
tool_call_id=tool_call_id,
|
||||
result=delta_text,
|
||||
tool_elapsed_time=tool_elapsed_time,
|
||||
)
|
||||
self._task_state.answer += delta_text
|
||||
case _:
|
||||
pass
|
||||
self._task_state.answer += delta_text
|
||||
yield self._message_cycle_manager.message_to_stream_response(
|
||||
answer=delta_text,
|
||||
message_id=self._message_id,
|
||||
from_variable_selector=event.from_variable_selector,
|
||||
chunk_type=event.chunk_type.value if event.chunk_type else None,
|
||||
tool_call_id=tool_call_id or None,
|
||||
tool_name=tool_name or None,
|
||||
tool_arguments=tool_arguments or None,
|
||||
tool_files=tool_files,
|
||||
tool_elapsed_time=tool_elapsed_time,
|
||||
tool_icon=tool_icon,
|
||||
tool_icon_dark=tool_icon_dark,
|
||||
answer=delta_text, message_id=self._message_id, from_variable_selector=event.from_variable_selector
|
||||
)
|
||||
|
||||
def _handle_iteration_start_event(
|
||||
@@ -950,7 +775,6 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
|
||||
# If there are assistant files, remove markdown image links from answer
|
||||
answer_text = self._task_state.answer
|
||||
answer_text = self._strip_think_blocks(answer_text)
|
||||
if self._recorded_files:
|
||||
# Remove markdown image links since we're storing files separately
|
||||
answer_text = re.sub(r"!\[.*?\]\(.*?\)", "", answer_text).strip()
|
||||
@@ -1002,54 +826,6 @@ class AdvancedChatAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
]
|
||||
session.add_all(message_files)
|
||||
|
||||
# Save generation detail (reasoning/tool calls/sequence) from stream buffer
|
||||
self._save_generation_detail(session=session, message=message)
|
||||
|
||||
@staticmethod
|
||||
def _strip_think_blocks(text: str) -> str:
|
||||
"""Remove <think>...</think> blocks (including their content) from text."""
|
||||
if not text or "<think" not in text.lower():
|
||||
return text
|
||||
|
||||
clean_text = re.sub(r"<think[^>]*>.*?</think>", "", text, flags=re.IGNORECASE | re.DOTALL)
|
||||
clean_text = re.sub(r"\n\s*\n", "\n\n", clean_text).strip()
|
||||
return clean_text
|
||||
|
||||
def _save_generation_detail(self, *, session: Session, message: Message) -> None:
|
||||
"""
|
||||
Save LLM generation detail for Chatflow using stream event buffer.
|
||||
The buffer records the exact order of events as they streamed,
|
||||
allowing accurate reconstruction of the generation sequence.
|
||||
"""
|
||||
# Finalize the stream buffer to flush any pending data
|
||||
self._stream_buffer.finalize()
|
||||
|
||||
# Only save if there's meaningful data
|
||||
if not self._stream_buffer.has_data():
|
||||
return
|
||||
|
||||
reasoning_content = self._stream_buffer.reasoning_content
|
||||
tool_calls = self._stream_buffer.tool_calls
|
||||
sequence = self._stream_buffer.sequence
|
||||
|
||||
# Check if generation detail already exists for this message
|
||||
existing = session.query(LLMGenerationDetail).filter_by(message_id=message.id).first()
|
||||
|
||||
if existing:
|
||||
existing.reasoning_content = json.dumps(reasoning_content) if reasoning_content else None
|
||||
existing.tool_calls = json.dumps(tool_calls) if tool_calls else None
|
||||
existing.sequence = json.dumps(sequence) if sequence else None
|
||||
else:
|
||||
generation_detail = LLMGenerationDetail(
|
||||
tenant_id=self._application_generate_entity.app_config.tenant_id,
|
||||
app_id=self._application_generate_entity.app_config.app_id,
|
||||
message_id=message.id,
|
||||
reasoning_content=json.dumps(reasoning_content) if reasoning_content else None,
|
||||
tool_calls=json.dumps(tool_calls) if tool_calls else None,
|
||||
sequence=json.dumps(sequence) if sequence else None,
|
||||
)
|
||||
session.add(generation_detail)
|
||||
|
||||
def _seed_graph_runtime_state_from_queue_manager(self) -> None:
|
||||
"""Bootstrap the cached runtime state from the queue manager when present."""
|
||||
candidate = self._base_task_pipeline.queue_manager.graph_runtime_state
|
||||
|
||||
@@ -3,8 +3,10 @@ from typing import cast
|
||||
|
||||
from sqlalchemy import select
|
||||
|
||||
from core.agent.agent_app_runner import AgentAppRunner
|
||||
from core.agent.cot_chat_agent_runner import CotChatAgentRunner
|
||||
from core.agent.cot_completion_agent_runner import CotCompletionAgentRunner
|
||||
from core.agent.entities import AgentEntity
|
||||
from core.agent.fc_agent_runner import FunctionCallAgentRunner
|
||||
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfig
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.apps.base_app_runner import AppRunner
|
||||
@@ -12,7 +14,8 @@ from core.app.entities.app_invoke_entities import AgentChatAppGenerateEntity
|
||||
from core.app.entities.queue_entities import QueueAnnotationReplyEvent
|
||||
from core.memory.token_buffer_memory import TokenBufferMemory
|
||||
from core.model_manager import ModelInstance
|
||||
from core.model_runtime.entities.model_entities import ModelFeature
|
||||
from core.model_runtime.entities.llm_entities import LLMMode
|
||||
from core.model_runtime.entities.model_entities import ModelFeature, ModelPropertyKey
|
||||
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
||||
from core.moderation.base import ModerationError
|
||||
from extensions.ext_database import db
|
||||
@@ -191,7 +194,22 @@ class AgentChatAppRunner(AppRunner):
|
||||
raise ValueError("Message not found")
|
||||
db.session.close()
|
||||
|
||||
runner = AgentAppRunner(
|
||||
runner_cls: type[FunctionCallAgentRunner] | type[CotChatAgentRunner] | type[CotCompletionAgentRunner]
|
||||
# start agent runner
|
||||
if agent_entity.strategy == AgentEntity.Strategy.CHAIN_OF_THOUGHT:
|
||||
# check LLM mode
|
||||
if model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.CHAT:
|
||||
runner_cls = CotChatAgentRunner
|
||||
elif model_schema.model_properties.get(ModelPropertyKey.MODE) == LLMMode.COMPLETION:
|
||||
runner_cls = CotCompletionAgentRunner
|
||||
else:
|
||||
raise ValueError(f"Invalid LLM mode: {model_schema.model_properties.get(ModelPropertyKey.MODE)}")
|
||||
elif agent_entity.strategy == AgentEntity.Strategy.FUNCTION_CALLING:
|
||||
runner_cls = FunctionCallAgentRunner
|
||||
else:
|
||||
raise ValueError(f"Invalid agent strategy: {agent_entity.strategy}")
|
||||
|
||||
runner = runner_cls(
|
||||
tenant_id=app_config.tenant_id,
|
||||
application_generate_entity=application_generate_entity,
|
||||
conversation=conversation_result,
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
import json
|
||||
from collections.abc import Generator, Mapping, Sequence
|
||||
from typing import TYPE_CHECKING, Any, Union, final
|
||||
|
||||
@@ -76,12 +75,24 @@ class BaseAppGenerator:
|
||||
user_inputs = {**user_inputs, **files_inputs, **file_list_inputs}
|
||||
|
||||
# Check if all files are converted to File
|
||||
if any(filter(lambda v: isinstance(v, dict), user_inputs.values())):
|
||||
raise ValueError("Invalid input type")
|
||||
if any(
|
||||
filter(lambda v: isinstance(v, dict), filter(lambda item: isinstance(item, list), user_inputs.values()))
|
||||
):
|
||||
raise ValueError("Invalid input type")
|
||||
invalid_dict_keys = [
|
||||
k
|
||||
for k, v in user_inputs.items()
|
||||
if isinstance(v, dict)
|
||||
and entity_dictionary[k].type not in {VariableEntityType.FILE, VariableEntityType.JSON_OBJECT}
|
||||
]
|
||||
if invalid_dict_keys:
|
||||
raise ValueError(f"Invalid input type for {invalid_dict_keys}")
|
||||
|
||||
invalid_list_dict_keys = [
|
||||
k
|
||||
for k, v in user_inputs.items()
|
||||
if isinstance(v, list)
|
||||
and any(isinstance(item, dict) for item in v)
|
||||
and entity_dictionary[k].type != VariableEntityType.FILE_LIST
|
||||
]
|
||||
if invalid_list_dict_keys:
|
||||
raise ValueError(f"Invalid input type for {invalid_list_dict_keys}")
|
||||
|
||||
return user_inputs
|
||||
|
||||
@@ -178,12 +189,8 @@ class BaseAppGenerator:
|
||||
elif value == 0:
|
||||
value = False
|
||||
case VariableEntityType.JSON_OBJECT:
|
||||
if not isinstance(value, str):
|
||||
raise ValueError(f"{variable_entity.variable} in input form must be a string")
|
||||
try:
|
||||
json.loads(value)
|
||||
except json.JSONDecodeError:
|
||||
raise ValueError(f"{variable_entity.variable} in input form must be a valid JSON object")
|
||||
if value and not isinstance(value, dict):
|
||||
raise ValueError(f"{variable_entity.variable} in input form must be a dict")
|
||||
case _:
|
||||
raise AssertionError("this statement should be unreachable.")
|
||||
|
||||
|
||||
@@ -671,7 +671,7 @@ class WorkflowResponseConverter:
|
||||
task_id=task_id,
|
||||
data=AgentLogStreamResponse.Data(
|
||||
node_execution_id=event.node_execution_id,
|
||||
message_id=event.id,
|
||||
id=event.id,
|
||||
parent_id=event.parent_id,
|
||||
label=event.label,
|
||||
error=event.error,
|
||||
|
||||
@@ -73,9 +73,15 @@ class PipelineRunner(WorkflowBasedAppRunner):
|
||||
"""
|
||||
app_config = self.application_generate_entity.app_config
|
||||
app_config = cast(PipelineConfig, app_config)
|
||||
invoke_from = self.application_generate_entity.invoke_from
|
||||
|
||||
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
|
||||
invoke_from = InvokeFrom.DEBUGGER
|
||||
|
||||
user_from = self._resolve_user_from(invoke_from)
|
||||
|
||||
user_id = None
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API}:
|
||||
if invoke_from in {InvokeFrom.WEB_APP, InvokeFrom.SERVICE_API}:
|
||||
end_user = db.session.query(EndUser).where(EndUser.id == self.application_generate_entity.user_id).first()
|
||||
if end_user:
|
||||
user_id = end_user.session_id
|
||||
@@ -117,7 +123,7 @@ class PipelineRunner(WorkflowBasedAppRunner):
|
||||
dataset_id=self.application_generate_entity.dataset_id,
|
||||
datasource_type=self.application_generate_entity.datasource_type,
|
||||
datasource_info=self.application_generate_entity.datasource_info,
|
||||
invoke_from=self.application_generate_entity.invoke_from.value,
|
||||
invoke_from=invoke_from.value,
|
||||
)
|
||||
|
||||
rag_pipeline_variables = []
|
||||
@@ -149,6 +155,8 @@ class PipelineRunner(WorkflowBasedAppRunner):
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
start_node_id=self.application_generate_entity.start_node_id,
|
||||
workflow=workflow,
|
||||
user_from=user_from,
|
||||
invoke_from=invoke_from,
|
||||
)
|
||||
|
||||
# RUN WORKFLOW
|
||||
@@ -159,12 +167,8 @@ class PipelineRunner(WorkflowBasedAppRunner):
|
||||
graph=graph,
|
||||
graph_config=workflow.graph_dict,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=(
|
||||
UserFrom.ACCOUNT
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
else UserFrom.END_USER
|
||||
),
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
user_from=user_from,
|
||||
invoke_from=invoke_from,
|
||||
call_depth=self.application_generate_entity.call_depth,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
variable_pool=variable_pool,
|
||||
@@ -210,7 +214,12 @@ class PipelineRunner(WorkflowBasedAppRunner):
|
||||
return workflow
|
||||
|
||||
def _init_rag_pipeline_graph(
|
||||
self, workflow: Workflow, graph_runtime_state: GraphRuntimeState, start_node_id: str | None = None
|
||||
self,
|
||||
workflow: Workflow,
|
||||
graph_runtime_state: GraphRuntimeState,
|
||||
start_node_id: str | None = None,
|
||||
user_from: UserFrom = UserFrom.ACCOUNT,
|
||||
invoke_from: InvokeFrom = InvokeFrom.SERVICE_API,
|
||||
) -> Graph:
|
||||
"""
|
||||
Init pipeline graph
|
||||
@@ -253,8 +262,8 @@ class PipelineRunner(WorkflowBasedAppRunner):
|
||||
workflow_id=workflow.id,
|
||||
graph_config=graph_config,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.SERVICE_API,
|
||||
user_from=user_from,
|
||||
invoke_from=invoke_from,
|
||||
call_depth=0,
|
||||
)
|
||||
|
||||
|
||||
@@ -20,7 +20,6 @@ from core.workflow.workflow_entry import WorkflowEntry
|
||||
from extensions.ext_redis import redis_client
|
||||
from extensions.otel import WorkflowAppRunnerHandler, trace_span
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models.enums import UserFrom
|
||||
from models.workflow import Workflow
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -74,7 +73,12 @@ class WorkflowAppRunner(WorkflowBasedAppRunner):
|
||||
workflow_execution_id=self.application_generate_entity.workflow_execution_id,
|
||||
)
|
||||
|
||||
invoke_from = self.application_generate_entity.invoke_from
|
||||
# if only single iteration or single loop run is requested
|
||||
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
|
||||
invoke_from = InvokeFrom.DEBUGGER
|
||||
user_from = self._resolve_user_from(invoke_from)
|
||||
|
||||
if self.application_generate_entity.single_iteration_run or self.application_generate_entity.single_loop_run:
|
||||
graph, variable_pool, graph_runtime_state = self._prepare_single_node_execution(
|
||||
workflow=self._workflow,
|
||||
@@ -102,6 +106,8 @@ class WorkflowAppRunner(WorkflowBasedAppRunner):
|
||||
workflow_id=self._workflow.id,
|
||||
tenant_id=self._workflow.tenant_id,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=user_from,
|
||||
invoke_from=invoke_from,
|
||||
root_node_id=self._root_node_id,
|
||||
)
|
||||
|
||||
@@ -120,12 +126,8 @@ class WorkflowAppRunner(WorkflowBasedAppRunner):
|
||||
graph=graph,
|
||||
graph_config=self._workflow.graph_dict,
|
||||
user_id=self.application_generate_entity.user_id,
|
||||
user_from=(
|
||||
UserFrom.ACCOUNT
|
||||
if self.application_generate_entity.invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
|
||||
else UserFrom.END_USER
|
||||
),
|
||||
invoke_from=self.application_generate_entity.invoke_from,
|
||||
user_from=user_from,
|
||||
invoke_from=invoke_from,
|
||||
call_depth=self.application_generate_entity.call_depth,
|
||||
variable_pool=variable_pool,
|
||||
graph_runtime_state=graph_runtime_state,
|
||||
|
||||
@@ -13,7 +13,6 @@ from core.app.apps.common.workflow_response_converter import WorkflowResponseCon
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom, WorkflowAppGenerateEntity
|
||||
from core.app.entities.queue_entities import (
|
||||
AppQueueEvent,
|
||||
ChunkType,
|
||||
MessageQueueMessage,
|
||||
QueueAgentLogEvent,
|
||||
QueueErrorEvent,
|
||||
@@ -484,33 +483,11 @@ class WorkflowAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
if delta_text is None:
|
||||
return
|
||||
|
||||
tool_call = event.tool_call
|
||||
tool_result = event.tool_result
|
||||
tool_payload = tool_call or tool_result
|
||||
tool_call_id = tool_payload.id if tool_payload and tool_payload.id else None
|
||||
tool_name = tool_payload.name if tool_payload and tool_payload.name else None
|
||||
tool_arguments = tool_call.arguments if tool_call else None
|
||||
tool_elapsed_time = tool_result.elapsed_time if tool_result else None
|
||||
tool_files = tool_result.files if tool_result else []
|
||||
tool_icon = tool_payload.icon if tool_payload else None
|
||||
tool_icon_dark = tool_payload.icon_dark if tool_payload else None
|
||||
|
||||
# only publish tts message at text chunk streaming
|
||||
if tts_publisher and queue_message:
|
||||
tts_publisher.publish(queue_message)
|
||||
|
||||
yield self._text_chunk_to_stream_response(
|
||||
text=delta_text,
|
||||
from_variable_selector=event.from_variable_selector,
|
||||
chunk_type=event.chunk_type,
|
||||
tool_call_id=tool_call_id,
|
||||
tool_name=tool_name,
|
||||
tool_arguments=tool_arguments,
|
||||
tool_files=tool_files,
|
||||
tool_elapsed_time=tool_elapsed_time,
|
||||
tool_icon=tool_icon,
|
||||
tool_icon_dark=tool_icon_dark,
|
||||
)
|
||||
yield self._text_chunk_to_stream_response(delta_text, from_variable_selector=event.from_variable_selector)
|
||||
|
||||
def _handle_agent_log_event(self, event: QueueAgentLogEvent, **kwargs) -> Generator[StreamResponse, None, None]:
|
||||
"""Handle agent log events."""
|
||||
@@ -673,61 +650,16 @@ class WorkflowAppGenerateTaskPipeline(GraphRuntimeStateSupport):
|
||||
session.add(workflow_app_log)
|
||||
|
||||
def _text_chunk_to_stream_response(
|
||||
self,
|
||||
text: str,
|
||||
from_variable_selector: list[str] | None = None,
|
||||
chunk_type: ChunkType | None = None,
|
||||
tool_call_id: str | None = None,
|
||||
tool_name: str | None = None,
|
||||
tool_arguments: str | None = None,
|
||||
tool_files: list[str] | None = None,
|
||||
tool_error: str | None = None,
|
||||
tool_elapsed_time: float | None = None,
|
||||
tool_icon: str | dict | None = None,
|
||||
tool_icon_dark: str | dict | None = None,
|
||||
self, text: str, from_variable_selector: list[str] | None = None
|
||||
) -> TextChunkStreamResponse:
|
||||
"""
|
||||
Handle completed event.
|
||||
:param text: text
|
||||
:return:
|
||||
"""
|
||||
from core.app.entities.task_entities import ChunkType as ResponseChunkType
|
||||
|
||||
response_chunk_type = ResponseChunkType(chunk_type.value) if chunk_type else ResponseChunkType.TEXT
|
||||
|
||||
data = TextChunkStreamResponse.Data(
|
||||
text=text,
|
||||
from_variable_selector=from_variable_selector,
|
||||
chunk_type=response_chunk_type,
|
||||
)
|
||||
|
||||
if response_chunk_type == ResponseChunkType.TOOL_CALL:
|
||||
data = data.model_copy(
|
||||
update={
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_name": tool_name,
|
||||
"tool_arguments": tool_arguments,
|
||||
"tool_icon": tool_icon,
|
||||
"tool_icon_dark": tool_icon_dark,
|
||||
}
|
||||
)
|
||||
elif response_chunk_type == ResponseChunkType.TOOL_RESULT:
|
||||
data = data.model_copy(
|
||||
update={
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_name": tool_name,
|
||||
"tool_arguments": tool_arguments,
|
||||
"tool_files": tool_files,
|
||||
"tool_error": tool_error,
|
||||
"tool_elapsed_time": tool_elapsed_time,
|
||||
"tool_icon": tool_icon,
|
||||
"tool_icon_dark": tool_icon_dark,
|
||||
}
|
||||
)
|
||||
|
||||
response = TextChunkStreamResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
data=data,
|
||||
data=TextChunkStreamResponse.Data(text=text, from_variable_selector=from_variable_selector),
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
@@ -77,10 +77,18 @@ class WorkflowBasedAppRunner:
|
||||
self._app_id = app_id
|
||||
self._graph_engine_layers = graph_engine_layers
|
||||
|
||||
@staticmethod
|
||||
def _resolve_user_from(invoke_from: InvokeFrom) -> UserFrom:
|
||||
if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}:
|
||||
return UserFrom.ACCOUNT
|
||||
return UserFrom.END_USER
|
||||
|
||||
def _init_graph(
|
||||
self,
|
||||
graph_config: Mapping[str, Any],
|
||||
graph_runtime_state: GraphRuntimeState,
|
||||
user_from: UserFrom,
|
||||
invoke_from: InvokeFrom,
|
||||
workflow_id: str = "",
|
||||
tenant_id: str = "",
|
||||
user_id: str = "",
|
||||
@@ -105,8 +113,8 @@ class WorkflowBasedAppRunner:
|
||||
workflow_id=workflow_id,
|
||||
graph_config=graph_config,
|
||||
user_id=user_id,
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.SERVICE_API,
|
||||
user_from=user_from,
|
||||
invoke_from=invoke_from,
|
||||
call_depth=0,
|
||||
)
|
||||
|
||||
@@ -250,7 +258,7 @@ class WorkflowBasedAppRunner:
|
||||
graph_config=graph_config,
|
||||
user_id="",
|
||||
user_from=UserFrom.ACCOUNT,
|
||||
invoke_from=InvokeFrom.SERVICE_API,
|
||||
invoke_from=InvokeFrom.DEBUGGER,
|
||||
call_depth=0,
|
||||
)
|
||||
|
||||
@@ -455,20 +463,12 @@ class WorkflowBasedAppRunner:
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunStreamChunkEvent):
|
||||
from core.app.entities.queue_entities import ChunkType as QueueChunkType
|
||||
|
||||
if event.is_final and not event.chunk:
|
||||
return
|
||||
|
||||
self._publish_event(
|
||||
QueueTextChunkEvent(
|
||||
text=event.chunk,
|
||||
from_variable_selector=list(event.selector),
|
||||
in_iteration_id=event.in_iteration_id,
|
||||
in_loop_id=event.in_loop_id,
|
||||
chunk_type=QueueChunkType(event.chunk_type.value),
|
||||
tool_call=event.tool_call,
|
||||
tool_result=event.tool_result,
|
||||
)
|
||||
)
|
||||
elif isinstance(event, NodeRunRetrieverResourceEvent):
|
||||
|
||||
@@ -1,70 +0,0 @@
|
||||
"""
|
||||
LLM Generation Detail entities.
|
||||
|
||||
Defines the structure for storing and transmitting LLM generation details
|
||||
including reasoning content, tool calls, and their sequence.
|
||||
"""
|
||||
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class ContentSegment(BaseModel):
|
||||
"""Represents a content segment in the generation sequence."""
|
||||
|
||||
type: Literal["content"] = "content"
|
||||
start: int = Field(..., description="Start position in the text")
|
||||
end: int = Field(..., description="End position in the text")
|
||||
|
||||
|
||||
class ReasoningSegment(BaseModel):
|
||||
"""Represents a reasoning segment in the generation sequence."""
|
||||
|
||||
type: Literal["reasoning"] = "reasoning"
|
||||
index: int = Field(..., description="Index into reasoning_content array")
|
||||
|
||||
|
||||
class ToolCallSegment(BaseModel):
|
||||
"""Represents a tool call segment in the generation sequence."""
|
||||
|
||||
type: Literal["tool_call"] = "tool_call"
|
||||
index: int = Field(..., description="Index into tool_calls array")
|
||||
|
||||
|
||||
SequenceSegment = ContentSegment | ReasoningSegment | ToolCallSegment
|
||||
|
||||
|
||||
class ToolCallDetail(BaseModel):
|
||||
"""Represents a tool call with its arguments and result."""
|
||||
|
||||
id: str = Field(default="", description="Unique identifier for the tool call")
|
||||
name: str = Field(..., description="Name of the tool")
|
||||
arguments: str = Field(default="", description="JSON string of tool arguments")
|
||||
result: str = Field(default="", description="Result from the tool execution")
|
||||
elapsed_time: float | None = Field(default=None, description="Elapsed time in seconds")
|
||||
|
||||
|
||||
class LLMGenerationDetailData(BaseModel):
|
||||
"""
|
||||
Domain model for LLM generation detail.
|
||||
|
||||
Contains the structured data for reasoning content, tool calls,
|
||||
and their display sequence.
|
||||
"""
|
||||
|
||||
reasoning_content: list[str] = Field(default_factory=list, description="List of reasoning segments")
|
||||
tool_calls: list[ToolCallDetail] = Field(default_factory=list, description="List of tool call details")
|
||||
sequence: list[SequenceSegment] = Field(default_factory=list, description="Display order of segments")
|
||||
|
||||
def is_empty(self) -> bool:
|
||||
"""Check if there's any meaningful generation detail."""
|
||||
return not self.reasoning_content and not self.tool_calls
|
||||
|
||||
def to_response_dict(self) -> dict:
|
||||
"""Convert to dictionary for API response."""
|
||||
return {
|
||||
"reasoning_content": self.reasoning_content,
|
||||
"tool_calls": [tc.model_dump() for tc in self.tool_calls],
|
||||
"sequence": [seg.model_dump() for seg in self.sequence],
|
||||
}
|
||||
@@ -7,7 +7,7 @@ from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
|
||||
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
|
||||
from core.workflow.entities import AgentNodeStrategyInit, ToolCall, ToolResult
|
||||
from core.workflow.entities import AgentNodeStrategyInit
|
||||
from core.workflow.enums import WorkflowNodeExecutionMetadataKey
|
||||
from core.workflow.nodes import NodeType
|
||||
|
||||
@@ -177,17 +177,6 @@ class QueueLoopCompletedEvent(AppQueueEvent):
|
||||
error: str | None = None
|
||||
|
||||
|
||||
class ChunkType(StrEnum):
|
||||
"""Stream chunk type for LLM-related events."""
|
||||
|
||||
TEXT = "text" # Normal text streaming
|
||||
TOOL_CALL = "tool_call" # Tool call arguments streaming
|
||||
TOOL_RESULT = "tool_result" # Tool execution result
|
||||
THOUGHT = "thought" # Agent thinking process (ReAct)
|
||||
THOUGHT_START = "thought_start" # Agent thought start
|
||||
THOUGHT_END = "thought_end" # Agent thought end
|
||||
|
||||
|
||||
class QueueTextChunkEvent(AppQueueEvent):
|
||||
"""
|
||||
QueueTextChunkEvent entity
|
||||
@@ -202,16 +191,6 @@ class QueueTextChunkEvent(AppQueueEvent):
|
||||
in_loop_id: str | None = None
|
||||
"""loop id if node is in loop"""
|
||||
|
||||
# Extended fields for Agent/Tool streaming
|
||||
chunk_type: ChunkType = ChunkType.TEXT
|
||||
"""type of the chunk"""
|
||||
|
||||
# Tool streaming payloads
|
||||
tool_call: ToolCall | None = None
|
||||
"""structured tool call info"""
|
||||
tool_result: ToolResult | None = None
|
||||
"""structured tool result info"""
|
||||
|
||||
|
||||
class QueueAgentMessageEvent(AppQueueEvent):
|
||||
"""
|
||||
|
||||
@@ -113,38 +113,6 @@ class MessageStreamResponse(StreamResponse):
|
||||
answer: str
|
||||
from_variable_selector: list[str] | None = None
|
||||
|
||||
# Extended fields for Agent/Tool streaming (imported at runtime to avoid circular import)
|
||||
chunk_type: str | None = None
|
||||
"""type of the chunk: text, tool_call, tool_result, thought"""
|
||||
|
||||
# Tool call fields (when chunk_type == "tool_call")
|
||||
tool_call_id: str | None = None
|
||||
"""unique identifier for this tool call"""
|
||||
tool_name: str | None = None
|
||||
"""name of the tool being called"""
|
||||
tool_arguments: str | None = None
|
||||
"""accumulated tool arguments JSON"""
|
||||
|
||||
# Tool result fields (when chunk_type == "tool_result")
|
||||
tool_files: list[str] | None = None
|
||||
"""file IDs produced by tool"""
|
||||
tool_error: str | None = None
|
||||
"""error message if tool failed"""
|
||||
tool_elapsed_time: float | None = None
|
||||
"""elapsed time spent executing the tool"""
|
||||
tool_icon: str | dict | None = None
|
||||
"""icon of the tool"""
|
||||
tool_icon_dark: str | dict | None = None
|
||||
"""dark theme icon of the tool"""
|
||||
|
||||
def model_dump(self, *args, **kwargs) -> dict[str, object]:
|
||||
kwargs.setdefault("exclude_none", True)
|
||||
return super().model_dump(*args, **kwargs)
|
||||
|
||||
def model_dump_json(self, *args, **kwargs) -> str:
|
||||
kwargs.setdefault("exclude_none", True)
|
||||
return super().model_dump_json(*args, **kwargs)
|
||||
|
||||
|
||||
class MessageAudioStreamResponse(StreamResponse):
|
||||
"""
|
||||
@@ -614,17 +582,6 @@ class LoopNodeCompletedStreamResponse(StreamResponse):
|
||||
data: Data
|
||||
|
||||
|
||||
class ChunkType(StrEnum):
|
||||
"""Stream chunk type for LLM-related events."""
|
||||
|
||||
TEXT = "text" # Normal text streaming
|
||||
TOOL_CALL = "tool_call" # Tool call arguments streaming
|
||||
TOOL_RESULT = "tool_result" # Tool execution result
|
||||
THOUGHT = "thought" # Agent thinking process (ReAct)
|
||||
THOUGHT_START = "thought_start" # Agent thought start
|
||||
THOUGHT_END = "thought_end" # Agent thought end
|
||||
|
||||
|
||||
class TextChunkStreamResponse(StreamResponse):
|
||||
"""
|
||||
TextChunkStreamResponse entity
|
||||
@@ -638,36 +595,6 @@ class TextChunkStreamResponse(StreamResponse):
|
||||
text: str
|
||||
from_variable_selector: list[str] | None = None
|
||||
|
||||
# Extended fields for Agent/Tool streaming
|
||||
chunk_type: ChunkType = ChunkType.TEXT
|
||||
"""type of the chunk"""
|
||||
|
||||
# Tool call fields (when chunk_type == TOOL_CALL)
|
||||
tool_call_id: str | None = None
|
||||
"""unique identifier for this tool call"""
|
||||
tool_name: str | None = None
|
||||
"""name of the tool being called"""
|
||||
tool_arguments: str | None = None
|
||||
"""accumulated tool arguments JSON"""
|
||||
|
||||
# Tool result fields (when chunk_type == TOOL_RESULT)
|
||||
tool_files: list[str] | None = None
|
||||
"""file IDs produced by tool"""
|
||||
tool_error: str | None = None
|
||||
"""error message if tool failed"""
|
||||
|
||||
# Tool elapsed time fields (when chunk_type == TOOL_RESULT)
|
||||
tool_elapsed_time: float | None = None
|
||||
"""elapsed time spent executing the tool"""
|
||||
|
||||
def model_dump(self, *args, **kwargs) -> dict[str, object]:
|
||||
kwargs.setdefault("exclude_none", True)
|
||||
return super().model_dump(*args, **kwargs)
|
||||
|
||||
def model_dump_json(self, *args, **kwargs) -> str:
|
||||
kwargs.setdefault("exclude_none", True)
|
||||
return super().model_dump_json(*args, **kwargs)
|
||||
|
||||
event: StreamEvent = StreamEvent.TEXT_CHUNK
|
||||
data: Data
|
||||
|
||||
@@ -816,7 +743,7 @@ class AgentLogStreamResponse(StreamResponse):
|
||||
"""
|
||||
|
||||
node_execution_id: str
|
||||
message_id: str
|
||||
id: str
|
||||
label: str
|
||||
parent_id: str | None = None
|
||||
error: str | None = None
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import logging
|
||||
|
||||
from core.variables import Variable
|
||||
from core.variables import VariableBase
|
||||
from core.workflow.constants import CONVERSATION_VARIABLE_NODE_ID
|
||||
from core.workflow.conversation_variable_updater import ConversationVariableUpdater
|
||||
from core.workflow.enums import NodeType
|
||||
@@ -44,7 +44,7 @@ class ConversationVariablePersistenceLayer(GraphEngineLayer):
|
||||
if selector[0] != CONVERSATION_VARIABLE_NODE_ID:
|
||||
continue
|
||||
variable = self.graph_runtime_state.variable_pool.get(selector)
|
||||
if not isinstance(variable, Variable):
|
||||
if not isinstance(variable, VariableBase):
|
||||
logger.warning(
|
||||
"Conversation variable not found in variable pool. selector=%s",
|
||||
selector,
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import logging
|
||||
import re
|
||||
import time
|
||||
from collections.abc import Generator
|
||||
from threading import Thread
|
||||
@@ -59,7 +58,7 @@ from core.prompt.utils.prompt_template_parser import PromptTemplateParser
|
||||
from events.message_event import message_was_created
|
||||
from extensions.ext_database import db
|
||||
from libs.datetime_utils import naive_utc_now
|
||||
from models.model import AppMode, Conversation, LLMGenerationDetail, Message, MessageAgentThought
|
||||
from models.model import AppMode, Conversation, Message, MessageAgentThought
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -69,8 +68,6 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline):
|
||||
EasyUIBasedGenerateTaskPipeline is a class that generate stream output and state management for Application.
|
||||
"""
|
||||
|
||||
_THINK_PATTERN = re.compile(r"<think[^>]*>(.*?)</think>", re.IGNORECASE | re.DOTALL)
|
||||
|
||||
_task_state: EasyUITaskState
|
||||
_application_generate_entity: Union[ChatAppGenerateEntity, CompletionAppGenerateEntity, AgentChatAppGenerateEntity]
|
||||
|
||||
@@ -412,136 +409,11 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline):
|
||||
)
|
||||
)
|
||||
|
||||
# Save LLM generation detail if there's reasoning_content
|
||||
self._save_generation_detail(session=session, message=message, llm_result=llm_result)
|
||||
|
||||
message_was_created.send(
|
||||
message,
|
||||
application_generate_entity=self._application_generate_entity,
|
||||
)
|
||||
|
||||
def _save_generation_detail(self, *, session: Session, message: Message, llm_result: LLMResult) -> None:
|
||||
"""
|
||||
Save LLM generation detail for Completion/Chat/Agent-Chat applications.
|
||||
For Agent-Chat, also merges MessageAgentThought records.
|
||||
"""
|
||||
import json
|
||||
|
||||
reasoning_list: list[str] = []
|
||||
tool_calls_list: list[dict] = []
|
||||
sequence: list[dict] = []
|
||||
answer = message.answer or ""
|
||||
|
||||
# Check if this is Agent-Chat mode by looking for agent thoughts
|
||||
agent_thoughts = (
|
||||
session.query(MessageAgentThought)
|
||||
.filter_by(message_id=message.id)
|
||||
.order_by(MessageAgentThought.position.asc())
|
||||
.all()
|
||||
)
|
||||
|
||||
if agent_thoughts:
|
||||
# Agent-Chat mode: merge MessageAgentThought records
|
||||
content_pos = 0
|
||||
cleaned_answer_parts: list[str] = []
|
||||
for thought in agent_thoughts:
|
||||
# Add thought/reasoning
|
||||
if thought.thought:
|
||||
reasoning_text = thought.thought
|
||||
if "<think" in reasoning_text.lower():
|
||||
clean_text, extracted_reasoning = self._split_reasoning_from_answer(reasoning_text)
|
||||
if extracted_reasoning:
|
||||
reasoning_text = extracted_reasoning
|
||||
thought.thought = clean_text or extracted_reasoning
|
||||
reasoning_list.append(reasoning_text)
|
||||
sequence.append({"type": "reasoning", "index": len(reasoning_list) - 1})
|
||||
|
||||
# Add tool calls
|
||||
if thought.tool:
|
||||
tool_calls_list.append(
|
||||
{
|
||||
"name": thought.tool,
|
||||
"arguments": thought.tool_input or "",
|
||||
"result": thought.observation or "",
|
||||
}
|
||||
)
|
||||
sequence.append({"type": "tool_call", "index": len(tool_calls_list) - 1})
|
||||
|
||||
# Add answer content if present
|
||||
if thought.answer:
|
||||
content_text = thought.answer
|
||||
if "<think" in content_text.lower():
|
||||
clean_answer, extracted_reasoning = self._split_reasoning_from_answer(content_text)
|
||||
if extracted_reasoning:
|
||||
reasoning_list.append(extracted_reasoning)
|
||||
sequence.append({"type": "reasoning", "index": len(reasoning_list) - 1})
|
||||
content_text = clean_answer
|
||||
thought.answer = clean_answer or content_text
|
||||
|
||||
if content_text:
|
||||
start = content_pos
|
||||
end = content_pos + len(content_text)
|
||||
sequence.append({"type": "content", "start": start, "end": end})
|
||||
content_pos = end
|
||||
cleaned_answer_parts.append(content_text)
|
||||
|
||||
if cleaned_answer_parts:
|
||||
merged_answer = "".join(cleaned_answer_parts)
|
||||
message.answer = merged_answer
|
||||
llm_result.message.content = merged_answer
|
||||
else:
|
||||
# Completion/Chat mode: use reasoning_content from llm_result
|
||||
reasoning_content = llm_result.reasoning_content
|
||||
if not reasoning_content and answer:
|
||||
# Extract reasoning from <think> blocks and clean the final answer
|
||||
clean_answer, reasoning_content = self._split_reasoning_from_answer(answer)
|
||||
if reasoning_content:
|
||||
answer = clean_answer
|
||||
llm_result.message.content = clean_answer
|
||||
llm_result.reasoning_content = reasoning_content
|
||||
message.answer = clean_answer
|
||||
if reasoning_content:
|
||||
reasoning_list = [reasoning_content]
|
||||
# Content comes first, then reasoning
|
||||
if answer:
|
||||
sequence.append({"type": "content", "start": 0, "end": len(answer)})
|
||||
sequence.append({"type": "reasoning", "index": 0})
|
||||
|
||||
# Only save if there's meaningful generation detail
|
||||
if not reasoning_list and not tool_calls_list:
|
||||
return
|
||||
|
||||
# Check if generation detail already exists
|
||||
existing = session.query(LLMGenerationDetail).filter_by(message_id=message.id).first()
|
||||
|
||||
if existing:
|
||||
existing.reasoning_content = json.dumps(reasoning_list) if reasoning_list else None
|
||||
existing.tool_calls = json.dumps(tool_calls_list) if tool_calls_list else None
|
||||
existing.sequence = json.dumps(sequence) if sequence else None
|
||||
else:
|
||||
generation_detail = LLMGenerationDetail(
|
||||
tenant_id=self._application_generate_entity.app_config.tenant_id,
|
||||
app_id=self._application_generate_entity.app_config.app_id,
|
||||
message_id=message.id,
|
||||
reasoning_content=json.dumps(reasoning_list) if reasoning_list else None,
|
||||
tool_calls=json.dumps(tool_calls_list) if tool_calls_list else None,
|
||||
sequence=json.dumps(sequence) if sequence else None,
|
||||
)
|
||||
session.add(generation_detail)
|
||||
|
||||
@classmethod
|
||||
def _split_reasoning_from_answer(cls, text: str) -> tuple[str, str]:
|
||||
"""
|
||||
Extract reasoning segments from <think> blocks and return (clean_text, reasoning).
|
||||
"""
|
||||
matches = cls._THINK_PATTERN.findall(text)
|
||||
reasoning_content = "\n".join(match.strip() for match in matches) if matches else ""
|
||||
|
||||
clean_text = cls._THINK_PATTERN.sub("", text)
|
||||
clean_text = re.sub(r"\n\s*\n", "\n\n", clean_text).strip()
|
||||
|
||||
return clean_text, reasoning_content or ""
|
||||
|
||||
def _handle_stop(self, event: QueueStopEvent):
|
||||
"""
|
||||
Handle stop.
|
||||
|
||||
@@ -232,31 +232,15 @@ class MessageCycleManager:
|
||||
answer: str,
|
||||
message_id: str,
|
||||
from_variable_selector: list[str] | None = None,
|
||||
chunk_type: str | None = None,
|
||||
tool_call_id: str | None = None,
|
||||
tool_name: str | None = None,
|
||||
tool_arguments: str | None = None,
|
||||
tool_files: list[str] | None = None,
|
||||
tool_error: str | None = None,
|
||||
tool_elapsed_time: float | None = None,
|
||||
tool_icon: str | dict | None = None,
|
||||
tool_icon_dark: str | dict | None = None,
|
||||
event_type: StreamEvent | None = None,
|
||||
) -> MessageStreamResponse:
|
||||
"""
|
||||
Message to stream response.
|
||||
:param answer: answer
|
||||
:param message_id: message id
|
||||
:param from_variable_selector: from variable selector
|
||||
:param chunk_type: type of the chunk (text, function_call, tool_result, thought)
|
||||
:param tool_call_id: unique identifier for this tool call
|
||||
:param tool_name: name of the tool being called
|
||||
:param tool_arguments: accumulated tool arguments JSON
|
||||
:param tool_files: file IDs produced by tool
|
||||
:param tool_error: error message if tool failed
|
||||
:return:
|
||||
"""
|
||||
response = MessageStreamResponse(
|
||||
return MessageStreamResponse(
|
||||
task_id=self._application_generate_entity.task_id,
|
||||
id=message_id,
|
||||
answer=answer,
|
||||
@@ -264,35 +248,6 @@ class MessageCycleManager:
|
||||
event=event_type or StreamEvent.MESSAGE,
|
||||
)
|
||||
|
||||
if chunk_type:
|
||||
response = response.model_copy(update={"chunk_type": chunk_type})
|
||||
|
||||
if chunk_type == "tool_call":
|
||||
response = response.model_copy(
|
||||
update={
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_name": tool_name,
|
||||
"tool_arguments": tool_arguments,
|
||||
"tool_icon": tool_icon,
|
||||
"tool_icon_dark": tool_icon_dark,
|
||||
}
|
||||
)
|
||||
elif chunk_type == "tool_result":
|
||||
response = response.model_copy(
|
||||
update={
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_name": tool_name,
|
||||
"tool_arguments": tool_arguments,
|
||||
"tool_files": tool_files,
|
||||
"tool_error": tool_error,
|
||||
"tool_elapsed_time": tool_elapsed_time,
|
||||
"tool_icon": tool_icon,
|
||||
"tool_icon_dark": tool_icon_dark,
|
||||
}
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
def message_replace_to_stream_response(self, answer: str, reason: str = "") -> MessageReplaceStreamResponse:
|
||||
"""
|
||||
Message replace to stream response.
|
||||
|
||||
@@ -5,6 +5,7 @@ from sqlalchemy import select
|
||||
|
||||
from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom
|
||||
from core.app.entities.app_invoke_entities import InvokeFrom
|
||||
from core.app.entities.queue_entities import QueueRetrieverResourcesEvent
|
||||
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
|
||||
from core.rag.index_processor.constant.index_type import IndexStructureType
|
||||
from core.rag.models.document import Document
|
||||
@@ -89,8 +90,6 @@ class DatasetIndexToolCallbackHandler:
|
||||
# TODO(-LAN-): Improve type check
|
||||
def return_retriever_resource_info(self, resource: Sequence[RetrievalSourceMetadata]):
|
||||
"""Handle return_retriever_resource_info."""
|
||||
from core.app.entities.queue_entities import QueueRetrieverResourcesEvent
|
||||
|
||||
self._queue_manager.publish(
|
||||
QueueRetrieverResourcesEvent(retriever_resources=resource), PublishFrom.APPLICATION_MANAGER
|
||||
)
|
||||
|
||||
@@ -33,6 +33,10 @@ class MaxRetriesExceededError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
request_error = httpx.RequestError
|
||||
max_retries_exceeded_error = MaxRetriesExceededError
|
||||
|
||||
|
||||
def _create_proxy_mounts() -> dict[str, httpx.HTTPTransport]:
|
||||
return {
|
||||
"http://": httpx.HTTPTransport(
|
||||
|
||||
@@ -56,6 +56,10 @@ class HostingConfiguration:
|
||||
self.provider_map[f"{DEFAULT_PLUGIN_ID}/minimax/minimax"] = self.init_minimax()
|
||||
self.provider_map[f"{DEFAULT_PLUGIN_ID}/spark/spark"] = self.init_spark()
|
||||
self.provider_map[f"{DEFAULT_PLUGIN_ID}/zhipuai/zhipuai"] = self.init_zhipuai()
|
||||
self.provider_map[f"{DEFAULT_PLUGIN_ID}/gemini/google"] = self.init_gemini()
|
||||
self.provider_map[f"{DEFAULT_PLUGIN_ID}/x/x"] = self.init_xai()
|
||||
self.provider_map[f"{DEFAULT_PLUGIN_ID}/deepseek/deepseek"] = self.init_deepseek()
|
||||
self.provider_map[f"{DEFAULT_PLUGIN_ID}/tongyi/tongyi"] = self.init_tongyi()
|
||||
|
||||
self.moderation_config = self.init_moderation_config()
|
||||
|
||||
@@ -128,7 +132,7 @@ class HostingConfiguration:
|
||||
quotas: list[HostingQuota] = []
|
||||
|
||||
if dify_config.HOSTED_OPENAI_TRIAL_ENABLED:
|
||||
hosted_quota_limit = dify_config.HOSTED_OPENAI_QUOTA_LIMIT
|
||||
hosted_quota_limit = 0
|
||||
trial_models = self.parse_restrict_models_from_env("HOSTED_OPENAI_TRIAL_MODELS")
|
||||
trial_quota = TrialHostingQuota(quota_limit=hosted_quota_limit, restrict_models=trial_models)
|
||||
quotas.append(trial_quota)
|
||||
@@ -156,18 +160,49 @@ class HostingConfiguration:
|
||||
quota_unit=quota_unit,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def init_anthropic() -> HostingProvider:
|
||||
quota_unit = QuotaUnit.TOKENS
|
||||
def init_gemini(self) -> HostingProvider:
|
||||
quota_unit = QuotaUnit.CREDITS
|
||||
quotas: list[HostingQuota] = []
|
||||
|
||||
if dify_config.HOSTED_GEMINI_TRIAL_ENABLED:
|
||||
hosted_quota_limit = 0
|
||||
trial_models = self.parse_restrict_models_from_env("HOSTED_GEMINI_TRIAL_MODELS")
|
||||
trial_quota = TrialHostingQuota(quota_limit=hosted_quota_limit, restrict_models=trial_models)
|
||||
quotas.append(trial_quota)
|
||||
|
||||
if dify_config.HOSTED_GEMINI_PAID_ENABLED:
|
||||
paid_models = self.parse_restrict_models_from_env("HOSTED_GEMINI_PAID_MODELS")
|
||||
paid_quota = PaidHostingQuota(restrict_models=paid_models)
|
||||
quotas.append(paid_quota)
|
||||
|
||||
if len(quotas) > 0:
|
||||
credentials = {
|
||||
"google_api_key": dify_config.HOSTED_GEMINI_API_KEY,
|
||||
}
|
||||
|
||||
if dify_config.HOSTED_GEMINI_API_BASE:
|
||||
credentials["google_base_url"] = dify_config.HOSTED_GEMINI_API_BASE
|
||||
|
||||
return HostingProvider(enabled=True, credentials=credentials, quota_unit=quota_unit, quotas=quotas)
|
||||
|
||||
return HostingProvider(
|
||||
enabled=False,
|
||||
quota_unit=quota_unit,
|
||||
)
|
||||
|
||||
def init_anthropic(self) -> HostingProvider:
|
||||
quota_unit = QuotaUnit.CREDITS
|
||||
quotas: list[HostingQuota] = []
|
||||
|
||||
if dify_config.HOSTED_ANTHROPIC_TRIAL_ENABLED:
|
||||
hosted_quota_limit = dify_config.HOSTED_ANTHROPIC_QUOTA_LIMIT
|
||||
trial_quota = TrialHostingQuota(quota_limit=hosted_quota_limit)
|
||||
hosted_quota_limit = 0
|
||||
trail_models = self.parse_restrict_models_from_env("HOSTED_ANTHROPIC_TRIAL_MODELS")
|
||||
trial_quota = TrialHostingQuota(quota_limit=hosted_quota_limit, restrict_models=trail_models)
|
||||
quotas.append(trial_quota)
|
||||
|
||||
if dify_config.HOSTED_ANTHROPIC_PAID_ENABLED:
|
||||
paid_quota = PaidHostingQuota()
|
||||
paid_models = self.parse_restrict_models_from_env("HOSTED_ANTHROPIC_PAID_MODELS")
|
||||
paid_quota = PaidHostingQuota(restrict_models=paid_models)
|
||||
quotas.append(paid_quota)
|
||||
|
||||
if len(quotas) > 0:
|
||||
@@ -185,6 +220,94 @@ class HostingConfiguration:
|
||||
quota_unit=quota_unit,
|
||||
)
|
||||
|
||||
def init_tongyi(self) -> HostingProvider:
|
||||
quota_unit = QuotaUnit.CREDITS
|
||||
quotas: list[HostingQuota] = []
|
||||
|
||||
if dify_config.HOSTED_TONGYI_TRIAL_ENABLED:
|
||||
hosted_quota_limit = 0
|
||||
trail_models = self.parse_restrict_models_from_env("HOSTED_TONGYI_TRIAL_MODELS")
|
||||
trial_quota = TrialHostingQuota(quota_limit=hosted_quota_limit, restrict_models=trail_models)
|
||||
quotas.append(trial_quota)
|
||||
|
||||
if dify_config.HOSTED_TONGYI_PAID_ENABLED:
|
||||
paid_models = self.parse_restrict_models_from_env("HOSTED_TONGYI_PAID_MODELS")
|
||||
paid_quota = PaidHostingQuota(restrict_models=paid_models)
|
||||
quotas.append(paid_quota)
|
||||
|
||||
if len(quotas) > 0:
|
||||
credentials = {
|
||||
"dashscope_api_key": dify_config.HOSTED_TONGYI_API_KEY,
|
||||
"use_international_endpoint": dify_config.HOSTED_TONGYI_USE_INTERNATIONAL_ENDPOINT,
|
||||
}
|
||||
|
||||
return HostingProvider(enabled=True, credentials=credentials, quota_unit=quota_unit, quotas=quotas)
|
||||
|
||||
return HostingProvider(
|
||||
enabled=False,
|
||||
quota_unit=quota_unit,
|
||||
)
|
||||
|
||||
def init_xai(self) -> HostingProvider:
|
||||
quota_unit = QuotaUnit.CREDITS
|
||||
quotas: list[HostingQuota] = []
|
||||
|
||||
if dify_config.HOSTED_XAI_TRIAL_ENABLED:
|
||||
hosted_quota_limit = 0
|
||||
trail_models = self.parse_restrict_models_from_env("HOSTED_XAI_TRIAL_MODELS")
|
||||
trial_quota = TrialHostingQuota(quota_limit=hosted_quota_limit, restrict_models=trail_models)
|
||||
quotas.append(trial_quota)
|
||||
|
||||
if dify_config.HOSTED_XAI_PAID_ENABLED:
|
||||
paid_models = self.parse_restrict_models_from_env("HOSTED_XAI_PAID_MODELS")
|
||||
paid_quota = PaidHostingQuota(restrict_models=paid_models)
|
||||
quotas.append(paid_quota)
|
||||
|
||||
if len(quotas) > 0:
|
||||
credentials = {
|
||||
"api_key": dify_config.HOSTED_XAI_API_KEY,
|
||||
}
|
||||
|
||||
if dify_config.HOSTED_XAI_API_BASE:
|
||||
credentials["endpoint_url"] = dify_config.HOSTED_XAI_API_BASE
|
||||
|
||||
return HostingProvider(enabled=True, credentials=credentials, quota_unit=quota_unit, quotas=quotas)
|
||||
|
||||
return HostingProvider(
|
||||
enabled=False,
|
||||
quota_unit=quota_unit,
|
||||
)
|
||||
|
||||
def init_deepseek(self) -> HostingProvider:
|
||||
quota_unit = QuotaUnit.CREDITS
|
||||
quotas: list[HostingQuota] = []
|
||||
|
||||
if dify_config.HOSTED_DEEPSEEK_TRIAL_ENABLED:
|
||||
hosted_quota_limit = 0
|
||||
trail_models = self.parse_restrict_models_from_env("HOSTED_DEEPSEEK_TRIAL_MODELS")
|
||||
trial_quota = TrialHostingQuota(quota_limit=hosted_quota_limit, restrict_models=trail_models)
|
||||
quotas.append(trial_quota)
|
||||
|
||||
if dify_config.HOSTED_DEEPSEEK_PAID_ENABLED:
|
||||
paid_models = self.parse_restrict_models_from_env("HOSTED_DEEPSEEK_PAID_MODELS")
|
||||
paid_quota = PaidHostingQuota(restrict_models=paid_models)
|
||||
quotas.append(paid_quota)
|
||||
|
||||
if len(quotas) > 0:
|
||||
credentials = {
|
||||
"api_key": dify_config.HOSTED_DEEPSEEK_API_KEY,
|
||||
}
|
||||
|
||||
if dify_config.HOSTED_DEEPSEEK_API_BASE:
|
||||
credentials["endpoint_url"] = dify_config.HOSTED_DEEPSEEK_API_BASE
|
||||
|
||||
return HostingProvider(enabled=True, credentials=credentials, quota_unit=quota_unit, quotas=quotas)
|
||||
|
||||
return HostingProvider(
|
||||
enabled=False,
|
||||
quota_unit=quota_unit,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def init_minimax() -> HostingProvider:
|
||||
quota_unit = QuotaUnit.TOKENS
|
||||
|
||||
@@ -71,8 +71,8 @@ class LLMGenerator:
|
||||
response: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(prompts), model_parameters={"max_tokens": 500, "temperature": 1}, stream=False
|
||||
)
|
||||
answer = cast(str, response.message.content)
|
||||
if answer is None:
|
||||
answer = response.message.get_text_content()
|
||||
if answer == "":
|
||||
return ""
|
||||
try:
|
||||
result_dict = json.loads(answer)
|
||||
@@ -184,7 +184,7 @@ class LLMGenerator:
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
|
||||
rule_config["prompt"] = cast(str, response.message.content)
|
||||
rule_config["prompt"] = response.message.get_text_content()
|
||||
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
@@ -237,13 +237,11 @@ class LLMGenerator:
|
||||
|
||||
return rule_config
|
||||
|
||||
rule_config["prompt"] = cast(str, prompt_content.message.content)
|
||||
rule_config["prompt"] = prompt_content.message.get_text_content()
|
||||
|
||||
if not isinstance(prompt_content.message.content, str):
|
||||
raise NotImplementedError("prompt content is not a string")
|
||||
parameter_generate_prompt = parameter_template.format(
|
||||
inputs={
|
||||
"INPUT_TEXT": prompt_content.message.content,
|
||||
"INPUT_TEXT": prompt_content.message.get_text_content(),
|
||||
},
|
||||
remove_template_variables=False,
|
||||
)
|
||||
@@ -253,7 +251,7 @@ class LLMGenerator:
|
||||
statement_generate_prompt = statement_template.format(
|
||||
inputs={
|
||||
"TASK_DESCRIPTION": instruction,
|
||||
"INPUT_TEXT": prompt_content.message.content,
|
||||
"INPUT_TEXT": prompt_content.message.get_text_content(),
|
||||
},
|
||||
remove_template_variables=False,
|
||||
)
|
||||
@@ -263,7 +261,7 @@ class LLMGenerator:
|
||||
parameter_content: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(parameter_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
rule_config["variables"] = re.findall(r'"\s*([^"]+)\s*"', cast(str, parameter_content.message.content))
|
||||
rule_config["variables"] = re.findall(r'"\s*([^"]+)\s*"', parameter_content.message.get_text_content())
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
error_step = "generate variables"
|
||||
@@ -272,7 +270,7 @@ class LLMGenerator:
|
||||
statement_content: LLMResult = model_instance.invoke_llm(
|
||||
prompt_messages=list(statement_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
rule_config["opening_statement"] = cast(str, statement_content.message.content)
|
||||
rule_config["opening_statement"] = statement_content.message.get_text_content()
|
||||
except InvokeError as e:
|
||||
error = str(e)
|
||||
error_step = "generate conversation opener"
|
||||
@@ -315,7 +313,7 @@ class LLMGenerator:
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
|
||||
generated_code = cast(str, response.message.content)
|
||||
generated_code = response.message.get_text_content()
|
||||
return {"code": generated_code, "language": code_language, "error": ""}
|
||||
|
||||
except InvokeError as e:
|
||||
@@ -351,7 +349,7 @@ class LLMGenerator:
|
||||
raise TypeError("Expected LLMResult when stream=False")
|
||||
response = result
|
||||
|
||||
answer = cast(str, response.message.content)
|
||||
answer = response.message.get_text_content()
|
||||
return answer.strip()
|
||||
|
||||
@classmethod
|
||||
@@ -375,10 +373,7 @@ class LLMGenerator:
|
||||
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
|
||||
)
|
||||
|
||||
raw_content = response.message.content
|
||||
|
||||
if not isinstance(raw_content, str):
|
||||
raise ValueError(f"LLM response content must be a string, got: {type(raw_content)}")
|
||||
raw_content = response.message.get_text_content()
|
||||
|
||||
try:
|
||||
parsed_content = json.loads(raw_content)
|
||||
|
||||
@@ -251,10 +251,7 @@ class AssistantPromptMessage(PromptMessage):
|
||||
|
||||
:return: True if prompt message is empty, False otherwise
|
||||
"""
|
||||
if not super().is_empty() and not self.tool_calls:
|
||||
return False
|
||||
|
||||
return True
|
||||
return super().is_empty() and not self.tool_calls
|
||||
|
||||
|
||||
class SystemPromptMessage(PromptMessage):
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import logging
|
||||
from collections.abc import Sequence
|
||||
|
||||
from opentelemetry.trace import SpanKind
|
||||
from sqlalchemy.orm import sessionmaker
|
||||
|
||||
from core.ops.aliyun_trace.data_exporter.traceclient import (
|
||||
@@ -54,7 +55,7 @@ from core.ops.entities.trace_entity import (
|
||||
ToolTraceInfo,
|
||||
WorkflowTraceInfo,
|
||||
)
|
||||
from core.repositories import SQLAlchemyWorkflowNodeExecutionRepository
|
||||
from core.repositories import DifyCoreRepositoryFactory
|
||||
from core.workflow.entities import WorkflowNodeExecution
|
||||
from core.workflow.enums import NodeType, WorkflowNodeExecutionMetadataKey
|
||||
from extensions.ext_database import db
|
||||
@@ -151,6 +152,7 @@ class AliyunDataTrace(BaseTraceInstance):
|
||||
),
|
||||
status=status,
|
||||
links=trace_metadata.links,
|
||||
span_kind=SpanKind.SERVER,
|
||||
)
|
||||
self.trace_client.add_span(message_span)
|
||||
|
||||
@@ -273,7 +275,7 @@ class AliyunDataTrace(BaseTraceInstance):
|
||||
service_account = self.get_service_account_with_tenant(app_id)
|
||||
|
||||
session_factory = sessionmaker(bind=db.engine)
|
||||
workflow_node_execution_repository = SQLAlchemyWorkflowNodeExecutionRepository(
|
||||
workflow_node_execution_repository = DifyCoreRepositoryFactory.create_workflow_node_execution_repository(
|
||||
session_factory=session_factory,
|
||||
user=service_account,
|
||||
app_id=app_id,
|
||||
@@ -456,6 +458,7 @@ class AliyunDataTrace(BaseTraceInstance):
|
||||
),
|
||||
status=status,
|
||||
links=trace_metadata.links,
|
||||
span_kind=SpanKind.SERVER,
|
||||
)
|
||||
self.trace_client.add_span(message_span)
|
||||
|
||||
@@ -475,6 +478,7 @@ class AliyunDataTrace(BaseTraceInstance):
|
||||
),
|
||||
status=status,
|
||||
links=trace_metadata.links,
|
||||
span_kind=SpanKind.SERVER if message_span_id is None else SpanKind.INTERNAL,
|
||||
)
|
||||
self.trace_client.add_span(workflow_span)
|
||||
|
||||
|
||||
@@ -166,7 +166,7 @@ class SpanBuilder:
|
||||
attributes=span_data.attributes,
|
||||
events=span_data.events,
|
||||
links=span_data.links,
|
||||
kind=trace_api.SpanKind.INTERNAL,
|
||||
kind=span_data.span_kind,
|
||||
status=span_data.status,
|
||||
start_time=span_data.start_time,
|
||||
end_time=span_data.end_time,
|
||||
|
||||
@@ -4,7 +4,7 @@ from typing import Any
|
||||
|
||||
from opentelemetry import trace as trace_api
|
||||
from opentelemetry.sdk.trace import Event
|
||||
from opentelemetry.trace import Status, StatusCode
|
||||
from opentelemetry.trace import SpanKind, Status, StatusCode
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
@@ -34,3 +34,4 @@ class SpanData(BaseModel):
|
||||
status: Status = Field(default=Status(StatusCode.UNSET), description="The status of the span.")
|
||||
start_time: int | None = Field(..., description="The start time of the span in nanoseconds.")
|
||||
end_time: int | None = Field(..., description="The end time of the span in nanoseconds.")
|
||||
span_kind: SpanKind = Field(default=SpanKind.INTERNAL, description="The OpenTelemetry SpanKind for this span.")
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from core.plugin.entities.endpoint import EndpointEntityWithInstance
|
||||
from core.plugin.impl.base import BasePluginClient
|
||||
from core.plugin.impl.exc import PluginDaemonInternalServerError
|
||||
|
||||
|
||||
class PluginEndpointClient(BasePluginClient):
|
||||
@@ -70,18 +71,27 @@ class PluginEndpointClient(BasePluginClient):
|
||||
def delete_endpoint(self, tenant_id: str, user_id: str, endpoint_id: str):
|
||||
"""
|
||||
Delete the given endpoint.
|
||||
|
||||
This operation is idempotent: if the endpoint is already deleted (record not found),
|
||||
it will return True instead of raising an error.
|
||||
"""
|
||||
return self._request_with_plugin_daemon_response(
|
||||
"POST",
|
||||
f"plugin/{tenant_id}/endpoint/remove",
|
||||
bool,
|
||||
data={
|
||||
"endpoint_id": endpoint_id,
|
||||
},
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
)
|
||||
try:
|
||||
return self._request_with_plugin_daemon_response(
|
||||
"POST",
|
||||
f"plugin/{tenant_id}/endpoint/remove",
|
||||
bool,
|
||||
data={
|
||||
"endpoint_id": endpoint_id,
|
||||
},
|
||||
headers={
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
)
|
||||
except PluginDaemonInternalServerError as e:
|
||||
# Make delete idempotent: if record is not found, consider it a success
|
||||
if "record not found" in str(e.description).lower():
|
||||
return True
|
||||
raise
|
||||
|
||||
def enable_endpoint(self, tenant_id: str, user_id: str, endpoint_id: str):
|
||||
"""
|
||||
|
||||
@@ -618,18 +618,18 @@ class ProviderManager:
|
||||
)
|
||||
|
||||
for quota in configuration.quotas:
|
||||
if quota.quota_type == ProviderQuotaType.TRIAL:
|
||||
if quota.quota_type in (ProviderQuotaType.TRIAL, ProviderQuotaType.PAID):
|
||||
# Init trial provider records if not exists
|
||||
if ProviderQuotaType.TRIAL not in provider_quota_to_provider_record_dict:
|
||||
if quota.quota_type not in provider_quota_to_provider_record_dict:
|
||||
try:
|
||||
# FIXME ignore the type error, only TrialHostingQuota has limit need to change the logic
|
||||
new_provider_record = Provider(
|
||||
tenant_id=tenant_id,
|
||||
# TODO: Use provider name with prefix after the data migration.
|
||||
provider_name=ModelProviderID(provider_name).provider_name,
|
||||
provider_type=ProviderType.SYSTEM,
|
||||
quota_type=ProviderQuotaType.TRIAL,
|
||||
quota_limit=quota.quota_limit, # type: ignore
|
||||
provider_type=ProviderType.SYSTEM.value,
|
||||
quota_type=quota.quota_type,
|
||||
quota_limit=0, # type: ignore
|
||||
quota_used=0,
|
||||
is_valid=True,
|
||||
)
|
||||
@@ -641,8 +641,8 @@ class ProviderManager:
|
||||
stmt = select(Provider).where(
|
||||
Provider.tenant_id == tenant_id,
|
||||
Provider.provider_name == ModelProviderID(provider_name).provider_name,
|
||||
Provider.provider_type == ProviderType.SYSTEM,
|
||||
Provider.quota_type == ProviderQuotaType.TRIAL,
|
||||
Provider.provider_type == ProviderType.SYSTEM.value,
|
||||
Provider.quota_type == quota.quota_type,
|
||||
)
|
||||
existed_provider_record = db.session.scalar(stmt)
|
||||
if not existed_provider_record:
|
||||
@@ -912,6 +912,22 @@ class ProviderManager:
|
||||
provider_record
|
||||
)
|
||||
quota_configurations = []
|
||||
|
||||
if dify_config.EDITION == "CLOUD":
|
||||
from services.credit_pool_service import CreditPoolService
|
||||
|
||||
trail_pool = CreditPoolService.get_pool(
|
||||
tenant_id=tenant_id,
|
||||
pool_type=ProviderQuotaType.TRIAL.value,
|
||||
)
|
||||
paid_pool = CreditPoolService.get_pool(
|
||||
tenant_id=tenant_id,
|
||||
pool_type=ProviderQuotaType.PAID.value,
|
||||
)
|
||||
else:
|
||||
trail_pool = None
|
||||
paid_pool = None
|
||||
|
||||
for provider_quota in provider_hosting_configuration.quotas:
|
||||
if provider_quota.quota_type not in quota_type_to_provider_records_dict:
|
||||
if provider_quota.quota_type == ProviderQuotaType.FREE:
|
||||
@@ -932,16 +948,36 @@ class ProviderManager:
|
||||
raise ValueError("quota_used is None")
|
||||
if provider_record.quota_limit is None:
|
||||
raise ValueError("quota_limit is None")
|
||||
if provider_quota.quota_type == ProviderQuotaType.TRIAL and trail_pool is not None:
|
||||
quota_configuration = QuotaConfiguration(
|
||||
quota_type=provider_quota.quota_type,
|
||||
quota_unit=provider_hosting_configuration.quota_unit or QuotaUnit.TOKENS,
|
||||
quota_used=trail_pool.quota_used,
|
||||
quota_limit=trail_pool.quota_limit,
|
||||
is_valid=trail_pool.quota_limit > trail_pool.quota_used or trail_pool.quota_limit == -1,
|
||||
restrict_models=provider_quota.restrict_models,
|
||||
)
|
||||
|
||||
quota_configuration = QuotaConfiguration(
|
||||
quota_type=provider_quota.quota_type,
|
||||
quota_unit=provider_hosting_configuration.quota_unit or QuotaUnit.TOKENS,
|
||||
quota_used=provider_record.quota_used,
|
||||
quota_limit=provider_record.quota_limit,
|
||||
is_valid=provider_record.quota_limit > provider_record.quota_used
|
||||
or provider_record.quota_limit == -1,
|
||||
restrict_models=provider_quota.restrict_models,
|
||||
)
|
||||
elif provider_quota.quota_type == ProviderQuotaType.PAID and paid_pool is not None:
|
||||
quota_configuration = QuotaConfiguration(
|
||||
quota_type=provider_quota.quota_type,
|
||||
quota_unit=provider_hosting_configuration.quota_unit or QuotaUnit.TOKENS,
|
||||
quota_used=paid_pool.quota_used,
|
||||
quota_limit=paid_pool.quota_limit,
|
||||
is_valid=paid_pool.quota_limit > paid_pool.quota_used or paid_pool.quota_limit == -1,
|
||||
restrict_models=provider_quota.restrict_models,
|
||||
)
|
||||
|
||||
else:
|
||||
quota_configuration = QuotaConfiguration(
|
||||
quota_type=provider_quota.quota_type,
|
||||
quota_unit=provider_hosting_configuration.quota_unit or QuotaUnit.TOKENS,
|
||||
quota_used=provider_record.quota_used,
|
||||
quota_limit=provider_record.quota_limit,
|
||||
is_valid=provider_record.quota_limit > provider_record.quota_used
|
||||
or provider_record.quota_limit == -1,
|
||||
restrict_models=provider_quota.restrict_models,
|
||||
)
|
||||
|
||||
quota_configurations.append(quota_configuration)
|
||||
|
||||
|
||||
@@ -29,7 +29,6 @@ from models import (
|
||||
Account,
|
||||
CreatorUserRole,
|
||||
EndUser,
|
||||
LLMGenerationDetail,
|
||||
WorkflowNodeExecutionModel,
|
||||
WorkflowNodeExecutionTriggeredFrom,
|
||||
)
|
||||
@@ -458,113 +457,6 @@ class SQLAlchemyWorkflowNodeExecutionRepository(WorkflowNodeExecutionRepository)
|
||||
session.merge(db_model)
|
||||
session.flush()
|
||||
|
||||
# Save LLMGenerationDetail for LLM nodes with successful execution
|
||||
if (
|
||||
domain_model.node_type == NodeType.LLM
|
||||
and domain_model.status == WorkflowNodeExecutionStatus.SUCCEEDED
|
||||
and domain_model.outputs is not None
|
||||
):
|
||||
self._save_llm_generation_detail(session, domain_model)
|
||||
|
||||
def _save_llm_generation_detail(self, session, execution: WorkflowNodeExecution) -> None:
|
||||
"""
|
||||
Save LLM generation detail for LLM nodes.
|
||||
Extracts reasoning_content, tool_calls, and sequence from outputs and metadata.
|
||||
"""
|
||||
outputs = execution.outputs or {}
|
||||
metadata = execution.metadata or {}
|
||||
|
||||
reasoning_list = self._extract_reasoning(outputs)
|
||||
tool_calls_list = self._extract_tool_calls(metadata.get(WorkflowNodeExecutionMetadataKey.AGENT_LOG))
|
||||
|
||||
if not reasoning_list and not tool_calls_list:
|
||||
return
|
||||
|
||||
sequence = self._build_generation_sequence(outputs.get("text", ""), reasoning_list, tool_calls_list)
|
||||
self._upsert_generation_detail(session, execution, reasoning_list, tool_calls_list, sequence)
|
||||
|
||||
def _extract_reasoning(self, outputs: Mapping[str, Any]) -> list[str]:
|
||||
"""Extract reasoning_content as a clean list of non-empty strings."""
|
||||
reasoning_content = outputs.get("reasoning_content")
|
||||
if isinstance(reasoning_content, str):
|
||||
trimmed = reasoning_content.strip()
|
||||
return [trimmed] if trimmed else []
|
||||
if isinstance(reasoning_content, list):
|
||||
return [item.strip() for item in reasoning_content if isinstance(item, str) and item.strip()]
|
||||
return []
|
||||
|
||||
def _extract_tool_calls(self, agent_log: Any) -> list[dict[str, str]]:
|
||||
"""Extract tool call records from agent logs."""
|
||||
if not agent_log or not isinstance(agent_log, list):
|
||||
return []
|
||||
|
||||
tool_calls: list[dict[str, str]] = []
|
||||
for log in agent_log:
|
||||
log_data = log.data if hasattr(log, "data") else (log.get("data", {}) if isinstance(log, dict) else {})
|
||||
tool_name = log_data.get("tool_name")
|
||||
if tool_name and str(tool_name).strip():
|
||||
tool_calls.append(
|
||||
{
|
||||
"id": log_data.get("tool_call_id", ""),
|
||||
"name": tool_name,
|
||||
"arguments": json.dumps(log_data.get("tool_args", {})),
|
||||
"result": str(log_data.get("output", "")),
|
||||
}
|
||||
)
|
||||
return tool_calls
|
||||
|
||||
def _build_generation_sequence(
|
||||
self, text: str, reasoning_list: list[str], tool_calls_list: list[dict[str, str]]
|
||||
) -> list[dict[str, Any]]:
|
||||
"""Build a simple content/reasoning/tool_call sequence."""
|
||||
sequence: list[dict[str, Any]] = []
|
||||
if text:
|
||||
sequence.append({"type": "content", "start": 0, "end": len(text)})
|
||||
for index in range(len(reasoning_list)):
|
||||
sequence.append({"type": "reasoning", "index": index})
|
||||
for index in range(len(tool_calls_list)):
|
||||
sequence.append({"type": "tool_call", "index": index})
|
||||
return sequence
|
||||
|
||||
def _upsert_generation_detail(
|
||||
self,
|
||||
session,
|
||||
execution: WorkflowNodeExecution,
|
||||
reasoning_list: list[str],
|
||||
tool_calls_list: list[dict[str, str]],
|
||||
sequence: list[dict[str, Any]],
|
||||
) -> None:
|
||||
"""Insert or update LLMGenerationDetail with serialized fields."""
|
||||
existing = (
|
||||
session.query(LLMGenerationDetail)
|
||||
.filter_by(
|
||||
workflow_run_id=execution.workflow_execution_id,
|
||||
node_id=execution.node_id,
|
||||
)
|
||||
.first()
|
||||
)
|
||||
|
||||
reasoning_json = json.dumps(reasoning_list) if reasoning_list else None
|
||||
tool_calls_json = json.dumps(tool_calls_list) if tool_calls_list else None
|
||||
sequence_json = json.dumps(sequence) if sequence else None
|
||||
|
||||
if existing:
|
||||
existing.reasoning_content = reasoning_json
|
||||
existing.tool_calls = tool_calls_json
|
||||
existing.sequence = sequence_json
|
||||
return
|
||||
|
||||
generation_detail = LLMGenerationDetail(
|
||||
tenant_id=self._tenant_id,
|
||||
app_id=self._app_id,
|
||||
workflow_run_id=execution.workflow_execution_id,
|
||||
node_id=execution.node_id,
|
||||
reasoning_content=reasoning_json,
|
||||
tool_calls=tool_calls_json,
|
||||
sequence=sequence_json,
|
||||
)
|
||||
session.add(generation_detail)
|
||||
|
||||
def get_db_models_by_workflow_run(
|
||||
self,
|
||||
workflow_run_id: str,
|
||||
|
||||
@@ -8,7 +8,6 @@ from typing import TYPE_CHECKING, Any
|
||||
if TYPE_CHECKING:
|
||||
from models.model import File
|
||||
|
||||
from core.model_runtime.entities.message_entities import PromptMessageTool
|
||||
from core.tools.__base.tool_runtime import ToolRuntime
|
||||
from core.tools.entities.tool_entities import (
|
||||
ToolEntity,
|
||||
@@ -155,60 +154,6 @@ class Tool(ABC):
|
||||
|
||||
return parameters
|
||||
|
||||
def to_prompt_message_tool(self) -> PromptMessageTool:
|
||||
message_tool = PromptMessageTool(
|
||||
name=self.entity.identity.name,
|
||||
description=self.entity.description.llm if self.entity.description else "",
|
||||
parameters={
|
||||
"type": "object",
|
||||
"properties": {},
|
||||
"required": [],
|
||||
},
|
||||
)
|
||||
|
||||
parameters = self.get_merged_runtime_parameters()
|
||||
for parameter in parameters:
|
||||
if parameter.form != ToolParameter.ToolParameterForm.LLM:
|
||||
continue
|
||||
|
||||
parameter_type = parameter.type.as_normal_type()
|
||||
if parameter.type in {
|
||||
ToolParameter.ToolParameterType.SYSTEM_FILES,
|
||||
ToolParameter.ToolParameterType.FILE,
|
||||
ToolParameter.ToolParameterType.FILES,
|
||||
}:
|
||||
# Determine the description based on parameter type
|
||||
if parameter.type == ToolParameter.ToolParameterType.FILE:
|
||||
file_format_desc = " Input the file id with format: [File: file_id]."
|
||||
else:
|
||||
file_format_desc = "Input the file id with format: [Files: file_id1, file_id2, ...]. "
|
||||
|
||||
message_tool.parameters["properties"][parameter.name] = {
|
||||
"type": "string",
|
||||
"description": (parameter.llm_description or "") + file_format_desc,
|
||||
}
|
||||
continue
|
||||
enum = []
|
||||
if parameter.type == ToolParameter.ToolParameterType.SELECT:
|
||||
enum = [option.value for option in parameter.options] if parameter.options else []
|
||||
|
||||
message_tool.parameters["properties"][parameter.name] = (
|
||||
{
|
||||
"type": parameter_type,
|
||||
"description": parameter.llm_description or "",
|
||||
}
|
||||
if parameter.input_schema is None
|
||||
else parameter.input_schema
|
||||
)
|
||||
|
||||
if len(enum) > 0:
|
||||
message_tool.parameters["properties"][parameter.name]["enum"] = enum
|
||||
|
||||
if parameter.required:
|
||||
message_tool.parameters["required"].append(parameter.name)
|
||||
|
||||
return message_tool
|
||||
|
||||
def create_image_message(
|
||||
self,
|
||||
image: str,
|
||||
|
||||
@@ -7,8 +7,8 @@ from typing import Any, cast
|
||||
|
||||
from flask import has_request_context
|
||||
from sqlalchemy import select
|
||||
from sqlalchemy.orm import Session
|
||||
|
||||
from core.db.session_factory import session_factory
|
||||
from core.file import FILE_MODEL_IDENTITY, File, FileTransferMethod
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage, LLMUsageMetadata
|
||||
from core.tools.__base.tool import Tool
|
||||
@@ -20,7 +20,6 @@ from core.tools.entities.tool_entities import (
|
||||
ToolProviderType,
|
||||
)
|
||||
from core.tools.errors import ToolInvokeError
|
||||
from extensions.ext_database import db
|
||||
from factories.file_factory import build_from_mapping
|
||||
from libs.login import current_user
|
||||
from models import Account, Tenant
|
||||
@@ -230,30 +229,32 @@ class WorkflowTool(Tool):
|
||||
"""
|
||||
Resolve user from database (worker/Celery context).
|
||||
"""
|
||||
with session_factory.create_session() as session:
|
||||
tenant_stmt = select(Tenant).where(Tenant.id == self.runtime.tenant_id)
|
||||
tenant = session.scalar(tenant_stmt)
|
||||
if not tenant:
|
||||
return None
|
||||
|
||||
user_stmt = select(Account).where(Account.id == user_id)
|
||||
user = session.scalar(user_stmt)
|
||||
if user:
|
||||
user.current_tenant = tenant
|
||||
session.expunge(user)
|
||||
return user
|
||||
|
||||
end_user_stmt = select(EndUser).where(EndUser.id == user_id, EndUser.tenant_id == tenant.id)
|
||||
end_user = session.scalar(end_user_stmt)
|
||||
if end_user:
|
||||
session.expunge(end_user)
|
||||
return end_user
|
||||
|
||||
tenant_stmt = select(Tenant).where(Tenant.id == self.runtime.tenant_id)
|
||||
tenant = db.session.scalar(tenant_stmt)
|
||||
if not tenant:
|
||||
return None
|
||||
|
||||
user_stmt = select(Account).where(Account.id == user_id)
|
||||
user = db.session.scalar(user_stmt)
|
||||
if user:
|
||||
user.current_tenant = tenant
|
||||
return user
|
||||
|
||||
end_user_stmt = select(EndUser).where(EndUser.id == user_id, EndUser.tenant_id == tenant.id)
|
||||
end_user = db.session.scalar(end_user_stmt)
|
||||
if end_user:
|
||||
return end_user
|
||||
|
||||
return None
|
||||
|
||||
def _get_workflow(self, app_id: str, version: str) -> Workflow:
|
||||
"""
|
||||
get the workflow by app id and version
|
||||
"""
|
||||
with Session(db.engine, expire_on_commit=False) as session, session.begin():
|
||||
with session_factory.create_session() as session, session.begin():
|
||||
if not version:
|
||||
stmt = (
|
||||
select(Workflow)
|
||||
@@ -265,22 +266,24 @@ class WorkflowTool(Tool):
|
||||
stmt = select(Workflow).where(Workflow.app_id == app_id, Workflow.version == version)
|
||||
workflow = session.scalar(stmt)
|
||||
|
||||
if not workflow:
|
||||
raise ValueError("workflow not found or not published")
|
||||
if not workflow:
|
||||
raise ValueError("workflow not found or not published")
|
||||
|
||||
return workflow
|
||||
session.expunge(workflow)
|
||||
return workflow
|
||||
|
||||
def _get_app(self, app_id: str) -> App:
|
||||
"""
|
||||
get the app by app id
|
||||
"""
|
||||
stmt = select(App).where(App.id == app_id)
|
||||
with Session(db.engine, expire_on_commit=False) as session, session.begin():
|
||||
with session_factory.create_session() as session, session.begin():
|
||||
app = session.scalar(stmt)
|
||||
if not app:
|
||||
raise ValueError("app not found")
|
||||
if not app:
|
||||
raise ValueError("app not found")
|
||||
|
||||
return app
|
||||
session.expunge(app)
|
||||
return app
|
||||
|
||||
def _transform_args(self, tool_parameters: dict) -> tuple[dict, list[dict]]:
|
||||
"""
|
||||
|
||||
@@ -30,6 +30,7 @@ from .variables import (
|
||||
SecretVariable,
|
||||
StringVariable,
|
||||
Variable,
|
||||
VariableBase,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
@@ -62,4 +63,5 @@ __all__ = [
|
||||
"StringSegment",
|
||||
"StringVariable",
|
||||
"Variable",
|
||||
"VariableBase",
|
||||
]
|
||||
|
||||
@@ -232,7 +232,7 @@ def get_segment_discriminator(v: Any) -> SegmentType | None:
|
||||
# - All variants in `SegmentUnion` must inherit from the `Segment` class.
|
||||
# - The union must include all non-abstract subclasses of `Segment`, except:
|
||||
# - `SegmentGroup`, which is not added to the variable pool.
|
||||
# - `Variable` and its subclasses, which are handled by `VariableUnion`.
|
||||
# - `VariableBase` and its subclasses, which are handled by `Variable`.
|
||||
SegmentUnion: TypeAlias = Annotated[
|
||||
(
|
||||
Annotated[NoneSegment, Tag(SegmentType.NONE)]
|
||||
|
||||
@@ -27,7 +27,7 @@ from .segments import (
|
||||
from .types import SegmentType
|
||||
|
||||
|
||||
class Variable(Segment):
|
||||
class VariableBase(Segment):
|
||||
"""
|
||||
A variable is a segment that has a name.
|
||||
|
||||
@@ -45,23 +45,23 @@ class Variable(Segment):
|
||||
selector: Sequence[str] = Field(default_factory=list)
|
||||
|
||||
|
||||
class StringVariable(StringSegment, Variable):
|
||||
class StringVariable(StringSegment, VariableBase):
|
||||
pass
|
||||
|
||||
|
||||
class FloatVariable(FloatSegment, Variable):
|
||||
class FloatVariable(FloatSegment, VariableBase):
|
||||
pass
|
||||
|
||||
|
||||
class IntegerVariable(IntegerSegment, Variable):
|
||||
class IntegerVariable(IntegerSegment, VariableBase):
|
||||
pass
|
||||
|
||||
|
||||
class ObjectVariable(ObjectSegment, Variable):
|
||||
class ObjectVariable(ObjectSegment, VariableBase):
|
||||
pass
|
||||
|
||||
|
||||
class ArrayVariable(ArraySegment, Variable):
|
||||
class ArrayVariable(ArraySegment, VariableBase):
|
||||
pass
|
||||
|
||||
|
||||
@@ -89,16 +89,16 @@ class SecretVariable(StringVariable):
|
||||
return encrypter.obfuscated_token(self.value)
|
||||
|
||||
|
||||
class NoneVariable(NoneSegment, Variable):
|
||||
class NoneVariable(NoneSegment, VariableBase):
|
||||
value_type: SegmentType = SegmentType.NONE
|
||||
value: None = None
|
||||
|
||||
|
||||
class FileVariable(FileSegment, Variable):
|
||||
class FileVariable(FileSegment, VariableBase):
|
||||
pass
|
||||
|
||||
|
||||
class BooleanVariable(BooleanSegment, Variable):
|
||||
class BooleanVariable(BooleanSegment, VariableBase):
|
||||
pass
|
||||
|
||||
|
||||
@@ -139,13 +139,13 @@ class RAGPipelineVariableInput(BaseModel):
|
||||
value: Any
|
||||
|
||||
|
||||
# The `VariableUnion`` type is used to enable serialization and deserialization with Pydantic.
|
||||
# Use `Variable` for type hinting when serialization is not required.
|
||||
# The `Variable` type is used to enable serialization and deserialization with Pydantic.
|
||||
# Use `VariableBase` for type hinting when serialization is not required.
|
||||
#
|
||||
# Note:
|
||||
# - All variants in `VariableUnion` must inherit from the `Variable` class.
|
||||
# - The union must include all non-abstract subclasses of `Segment`, except:
|
||||
VariableUnion: TypeAlias = Annotated[
|
||||
# - All variants in `Variable` must inherit from the `VariableBase` class.
|
||||
# - The union must include all non-abstract subclasses of `VariableBase`.
|
||||
Variable: TypeAlias = Annotated[
|
||||
(
|
||||
Annotated[NoneVariable, Tag(SegmentType.NONE)]
|
||||
| Annotated[StringVariable, Tag(SegmentType.STRING)]
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import abc
|
||||
from typing import Protocol
|
||||
|
||||
from core.variables import Variable
|
||||
from core.variables import VariableBase
|
||||
|
||||
|
||||
class ConversationVariableUpdater(Protocol):
|
||||
@@ -20,12 +20,12 @@ class ConversationVariableUpdater(Protocol):
|
||||
"""
|
||||
|
||||
@abc.abstractmethod
|
||||
def update(self, conversation_id: str, variable: "Variable"):
|
||||
def update(self, conversation_id: str, variable: "VariableBase"):
|
||||
"""
|
||||
Updates the value of the specified conversation variable in the underlying storage.
|
||||
|
||||
:param conversation_id: The ID of the conversation to update. Typically references `ConversationVariable.id`.
|
||||
:param variable: The `Variable` instance containing the updated value.
|
||||
:param variable: The `VariableBase` instance containing the updated value.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
@@ -1,16 +1,11 @@
|
||||
from .agent import AgentNodeStrategyInit
|
||||
from .graph_init_params import GraphInitParams
|
||||
from .tool_entities import ToolCall, ToolCallResult, ToolResult, ToolResultStatus
|
||||
from .workflow_execution import WorkflowExecution
|
||||
from .workflow_node_execution import WorkflowNodeExecution
|
||||
|
||||
__all__ = [
|
||||
"AgentNodeStrategyInit",
|
||||
"GraphInitParams",
|
||||
"ToolCall",
|
||||
"ToolCallResult",
|
||||
"ToolResult",
|
||||
"ToolResultStatus",
|
||||
"WorkflowExecution",
|
||||
"WorkflowNodeExecution",
|
||||
]
|
||||
|
||||
@@ -1,39 +0,0 @@
|
||||
from enum import StrEnum
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.file import File
|
||||
|
||||
|
||||
class ToolResultStatus(StrEnum):
|
||||
SUCCESS = "success"
|
||||
ERROR = "error"
|
||||
|
||||
|
||||
class ToolCall(BaseModel):
|
||||
id: str | None = Field(default=None, description="Unique identifier for this tool call")
|
||||
name: str | None = Field(default=None, description="Name of the tool being called")
|
||||
arguments: str | None = Field(default=None, description="Accumulated tool arguments JSON")
|
||||
icon: str | dict | None = Field(default=None, description="Icon of the tool")
|
||||
icon_dark: str | dict | None = Field(default=None, description="Dark theme icon of the tool")
|
||||
|
||||
|
||||
class ToolResult(BaseModel):
|
||||
id: str | None = Field(default=None, description="Identifier of the tool call this result belongs to")
|
||||
name: str | None = Field(default=None, description="Name of the tool")
|
||||
output: str | None = Field(default=None, description="Tool output text, error or success message")
|
||||
files: list[str] = Field(default_factory=list, description="File produced by tool")
|
||||
status: ToolResultStatus | None = Field(default=ToolResultStatus.SUCCESS, description="Tool execution status")
|
||||
elapsed_time: float | None = Field(default=None, description="Elapsed seconds spent executing the tool")
|
||||
icon: str | dict | None = Field(default=None, description="Icon of the tool")
|
||||
icon_dark: str | dict | None = Field(default=None, description="Dark theme icon of the tool")
|
||||
|
||||
|
||||
class ToolCallResult(BaseModel):
|
||||
id: str | None = Field(default=None, description="Identifier for the tool call")
|
||||
name: str | None = Field(default=None, description="Name of the tool")
|
||||
arguments: str | None = Field(default=None, description="Accumulated tool arguments JSON")
|
||||
output: str | None = Field(default=None, description="Tool output text, error or success message")
|
||||
files: list[File] = Field(default_factory=list, description="File produced by tool")
|
||||
status: ToolResultStatus = Field(default=ToolResultStatus.SUCCESS, description="Tool execution status")
|
||||
elapsed_time: float | None = Field(default=None, description="Elapsed seconds spent executing the tool")
|
||||
@@ -211,6 +211,10 @@ class WorkflowExecutionStatus(StrEnum):
|
||||
def is_ended(self) -> bool:
|
||||
return self in _END_STATE
|
||||
|
||||
@classmethod
|
||||
def ended_values(cls) -> list[str]:
|
||||
return [status.value for status in _END_STATE]
|
||||
|
||||
|
||||
_END_STATE = frozenset(
|
||||
[
|
||||
@@ -247,8 +251,6 @@ class WorkflowNodeExecutionMetadataKey(StrEnum):
|
||||
ERROR_STRATEGY = "error_strategy" # node in continue on error mode return the field
|
||||
LOOP_VARIABLE_MAP = "loop_variable_map" # single loop variable output
|
||||
DATASOURCE_INFO = "datasource_info"
|
||||
LLM_CONTENT_SEQUENCE = "llm_content_sequence"
|
||||
LLM_TRACE = "llm_trace"
|
||||
COMPLETED_REASON = "completed_reason" # completed reason for loop node
|
||||
|
||||
|
||||
|
||||
@@ -11,7 +11,7 @@ from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.variables.variables import VariableUnion
|
||||
from core.variables.variables import Variable
|
||||
|
||||
|
||||
class CommandType(StrEnum):
|
||||
@@ -46,7 +46,7 @@ class PauseCommand(GraphEngineCommand):
|
||||
class VariableUpdate(BaseModel):
|
||||
"""Represents a single variable update instruction."""
|
||||
|
||||
value: VariableUnion = Field(description="New variable value")
|
||||
value: Variable = Field(description="New variable value")
|
||||
|
||||
|
||||
class UpdateVariablesCommand(GraphEngineCommand):
|
||||
|
||||
@@ -16,13 +16,7 @@ from pydantic import BaseModel, Field
|
||||
|
||||
from core.workflow.enums import NodeExecutionType, NodeState
|
||||
from core.workflow.graph import Graph
|
||||
from core.workflow.graph_events import (
|
||||
ChunkType,
|
||||
NodeRunStreamChunkEvent,
|
||||
NodeRunSucceededEvent,
|
||||
ToolCall,
|
||||
ToolResult,
|
||||
)
|
||||
from core.workflow.graph_events import NodeRunStreamChunkEvent, NodeRunSucceededEvent
|
||||
from core.workflow.nodes.base.template import TextSegment, VariableSegment
|
||||
from core.workflow.runtime import VariablePool
|
||||
|
||||
@@ -327,24 +321,11 @@ class ResponseStreamCoordinator:
|
||||
selector: Sequence[str],
|
||||
chunk: str,
|
||||
is_final: bool = False,
|
||||
chunk_type: ChunkType = ChunkType.TEXT,
|
||||
tool_call: ToolCall | None = None,
|
||||
tool_result: ToolResult | None = None,
|
||||
) -> NodeRunStreamChunkEvent:
|
||||
"""Create a stream chunk event with consistent structure.
|
||||
|
||||
For selectors with special prefixes (sys, env, conversation), we use the
|
||||
active response node's information since these are not actual node IDs.
|
||||
|
||||
Args:
|
||||
node_id: The node ID to attribute the event to
|
||||
execution_id: The execution ID for this node
|
||||
selector: The variable selector
|
||||
chunk: The chunk content
|
||||
is_final: Whether this is the final chunk
|
||||
chunk_type: The semantic type of the chunk being streamed
|
||||
tool_call: Structured data for tool_call chunks
|
||||
tool_result: Structured data for tool_result chunks
|
||||
"""
|
||||
# Check if this is a special selector that doesn't correspond to a node
|
||||
if selector and selector[0] not in self._graph.nodes and self._active_session:
|
||||
@@ -357,9 +338,6 @@ class ResponseStreamCoordinator:
|
||||
selector=selector,
|
||||
chunk=chunk,
|
||||
is_final=is_final,
|
||||
chunk_type=chunk_type,
|
||||
tool_call=tool_call,
|
||||
tool_result=tool_result,
|
||||
)
|
||||
|
||||
# Standard case: selector refers to an actual node
|
||||
@@ -371,9 +349,6 @@ class ResponseStreamCoordinator:
|
||||
selector=selector,
|
||||
chunk=chunk,
|
||||
is_final=is_final,
|
||||
chunk_type=chunk_type,
|
||||
tool_call=tool_call,
|
||||
tool_result=tool_result,
|
||||
)
|
||||
|
||||
def _process_variable_segment(self, segment: VariableSegment) -> tuple[Sequence[NodeRunStreamChunkEvent], bool]:
|
||||
@@ -381,8 +356,6 @@ class ResponseStreamCoordinator:
|
||||
|
||||
Handles both regular node selectors and special system selectors (sys, env, conversation).
|
||||
For special selectors, we attribute the output to the active response node.
|
||||
|
||||
For object-type variables, automatically streams all child fields that have stream events.
|
||||
"""
|
||||
events: list[NodeRunStreamChunkEvent] = []
|
||||
source_selector_prefix = segment.selector[0] if segment.selector else ""
|
||||
@@ -391,81 +364,60 @@ class ResponseStreamCoordinator:
|
||||
# Determine which node to attribute the output to
|
||||
# For special selectors (sys, env, conversation), use the active response node
|
||||
# For regular selectors, use the source node
|
||||
active_session = self._active_session
|
||||
special_selector = bool(active_session and source_selector_prefix not in self._graph.nodes)
|
||||
output_node_id = active_session.node_id if special_selector and active_session else source_selector_prefix
|
||||
if self._active_session and source_selector_prefix not in self._graph.nodes:
|
||||
# Special selector - use active response node
|
||||
output_node_id = self._active_session.node_id
|
||||
else:
|
||||
# Regular node selector
|
||||
output_node_id = source_selector_prefix
|
||||
execution_id = self._get_or_create_execution_id(output_node_id)
|
||||
|
||||
# Check if there's a direct stream for this selector
|
||||
has_direct_stream = (
|
||||
tuple(segment.selector) in self._stream_buffers or tuple(segment.selector) in self._closed_streams
|
||||
)
|
||||
|
||||
stream_targets = [segment.selector] if has_direct_stream else sorted(self._find_child_streams(segment.selector))
|
||||
|
||||
if stream_targets:
|
||||
all_complete = True
|
||||
|
||||
for target_selector in stream_targets:
|
||||
while self._has_unread_stream(target_selector):
|
||||
if event := self._pop_stream_chunk(target_selector):
|
||||
events.append(
|
||||
self._rewrite_stream_event(
|
||||
event=event,
|
||||
output_node_id=output_node_id,
|
||||
execution_id=execution_id,
|
||||
special_selector=bool(special_selector),
|
||||
)
|
||||
)
|
||||
|
||||
if not self._is_stream_closed(target_selector):
|
||||
all_complete = False
|
||||
|
||||
is_complete = all_complete
|
||||
|
||||
# Fallback: check if scalar value exists in variable pool
|
||||
if not is_complete and not has_direct_stream:
|
||||
if value := self._variable_pool.get(segment.selector):
|
||||
# Process scalar value
|
||||
is_last_segment = bool(
|
||||
self._active_session
|
||||
and self._active_session.index == len(self._active_session.template.segments) - 1
|
||||
)
|
||||
events.append(
|
||||
self._create_stream_chunk_event(
|
||||
node_id=output_node_id,
|
||||
execution_id=execution_id,
|
||||
selector=segment.selector,
|
||||
chunk=value.markdown,
|
||||
is_final=is_last_segment,
|
||||
# Stream all available chunks
|
||||
while self._has_unread_stream(segment.selector):
|
||||
if event := self._pop_stream_chunk(segment.selector):
|
||||
# For special selectors, we need to update the event to use
|
||||
# the active response node's information
|
||||
if self._active_session and source_selector_prefix not in self._graph.nodes:
|
||||
response_node = self._graph.nodes[self._active_session.node_id]
|
||||
# Create a new event with the response node's information
|
||||
# but keep the original selector
|
||||
updated_event = NodeRunStreamChunkEvent(
|
||||
id=execution_id,
|
||||
node_id=response_node.id,
|
||||
node_type=response_node.node_type,
|
||||
selector=event.selector, # Keep original selector
|
||||
chunk=event.chunk,
|
||||
is_final=event.is_final,
|
||||
)
|
||||
events.append(updated_event)
|
||||
else:
|
||||
# Regular node selector - use event as is
|
||||
events.append(event)
|
||||
|
||||
# Check if this is the last chunk by looking ahead
|
||||
stream_closed = self._is_stream_closed(segment.selector)
|
||||
# Check if stream is closed to determine if segment is complete
|
||||
if stream_closed:
|
||||
is_complete = True
|
||||
|
||||
elif value := self._variable_pool.get(segment.selector):
|
||||
# Process scalar value
|
||||
is_last_segment = bool(
|
||||
self._active_session and self._active_session.index == len(self._active_session.template.segments) - 1
|
||||
)
|
||||
events.append(
|
||||
self._create_stream_chunk_event(
|
||||
node_id=output_node_id,
|
||||
execution_id=execution_id,
|
||||
selector=segment.selector,
|
||||
chunk=value.markdown,
|
||||
is_final=is_last_segment,
|
||||
)
|
||||
is_complete = True
|
||||
)
|
||||
is_complete = True
|
||||
|
||||
return events, is_complete
|
||||
|
||||
def _rewrite_stream_event(
|
||||
self,
|
||||
event: NodeRunStreamChunkEvent,
|
||||
output_node_id: str,
|
||||
execution_id: str,
|
||||
special_selector: bool,
|
||||
) -> NodeRunStreamChunkEvent:
|
||||
"""Rewrite event to attribute to active response node when selector is special."""
|
||||
if not special_selector:
|
||||
return event
|
||||
|
||||
return self._create_stream_chunk_event(
|
||||
node_id=output_node_id,
|
||||
execution_id=execution_id,
|
||||
selector=event.selector,
|
||||
chunk=event.chunk,
|
||||
is_final=event.is_final,
|
||||
chunk_type=event.chunk_type,
|
||||
tool_call=event.tool_call,
|
||||
tool_result=event.tool_result,
|
||||
)
|
||||
|
||||
def _process_text_segment(self, segment: TextSegment) -> Sequence[NodeRunStreamChunkEvent]:
|
||||
"""Process a text segment. Returns (events, is_complete)."""
|
||||
assert self._active_session is not None
|
||||
@@ -561,36 +513,6 @@ class ResponseStreamCoordinator:
|
||||
|
||||
# ============= Internal Stream Management Methods =============
|
||||
|
||||
def _find_child_streams(self, parent_selector: Sequence[str]) -> list[tuple[str, ...]]:
|
||||
"""Find all child stream selectors that are descendants of the parent selector.
|
||||
|
||||
For example, if parent_selector is ['llm', 'generation'], this will find:
|
||||
- ['llm', 'generation', 'content']
|
||||
- ['llm', 'generation', 'tool_calls']
|
||||
- ['llm', 'generation', 'tool_results']
|
||||
- ['llm', 'generation', 'thought']
|
||||
|
||||
Args:
|
||||
parent_selector: The parent selector to search for children
|
||||
|
||||
Returns:
|
||||
List of child selector tuples found in stream buffers or closed streams
|
||||
"""
|
||||
parent_key = tuple(parent_selector)
|
||||
parent_len = len(parent_key)
|
||||
child_streams: set[tuple[str, ...]] = set()
|
||||
|
||||
# Search in both active buffers and closed streams
|
||||
all_selectors = set(self._stream_buffers.keys()) | self._closed_streams
|
||||
|
||||
for selector_key in all_selectors:
|
||||
# Check if this selector is a direct child of the parent
|
||||
# Direct child means: len(child) == len(parent) + 1 and child starts with parent
|
||||
if len(selector_key) == parent_len + 1 and selector_key[:parent_len] == parent_key:
|
||||
child_streams.add(selector_key)
|
||||
|
||||
return sorted(child_streams)
|
||||
|
||||
def _append_stream_chunk(self, selector: Sequence[str], event: NodeRunStreamChunkEvent) -> None:
|
||||
"""
|
||||
Append a stream chunk to the internal buffer.
|
||||
|
||||
@@ -36,7 +36,6 @@ from .loop import (
|
||||
|
||||
# Node events
|
||||
from .node import (
|
||||
ChunkType,
|
||||
NodeRunExceptionEvent,
|
||||
NodeRunFailedEvent,
|
||||
NodeRunPauseRequestedEvent,
|
||||
@@ -45,13 +44,10 @@ from .node import (
|
||||
NodeRunStartedEvent,
|
||||
NodeRunStreamChunkEvent,
|
||||
NodeRunSucceededEvent,
|
||||
ToolCall,
|
||||
ToolResult,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"BaseGraphEvent",
|
||||
"ChunkType",
|
||||
"GraphEngineEvent",
|
||||
"GraphNodeEventBase",
|
||||
"GraphRunAbortedEvent",
|
||||
@@ -77,6 +73,4 @@ __all__ = [
|
||||
"NodeRunStartedEvent",
|
||||
"NodeRunStreamChunkEvent",
|
||||
"NodeRunSucceededEvent",
|
||||
"ToolCall",
|
||||
"ToolResult",
|
||||
]
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
from collections.abc import Sequence
|
||||
from datetime import datetime
|
||||
from enum import StrEnum
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
|
||||
from core.workflow.entities import AgentNodeStrategyInit, ToolCall, ToolResult
|
||||
from core.workflow.entities import AgentNodeStrategyInit
|
||||
from core.workflow.entities.pause_reason import PauseReason
|
||||
|
||||
from .base import GraphNodeEventBase
|
||||
@@ -22,39 +21,13 @@ class NodeRunStartedEvent(GraphNodeEventBase):
|
||||
provider_id: str = ""
|
||||
|
||||
|
||||
class ChunkType(StrEnum):
|
||||
"""Stream chunk type for LLM-related events."""
|
||||
|
||||
TEXT = "text" # Normal text streaming
|
||||
TOOL_CALL = "tool_call" # Tool call arguments streaming
|
||||
TOOL_RESULT = "tool_result" # Tool execution result
|
||||
THOUGHT = "thought" # Agent thinking process (ReAct)
|
||||
THOUGHT_START = "thought_start" # Agent thought start
|
||||
THOUGHT_END = "thought_end" # Agent thought end
|
||||
|
||||
|
||||
class NodeRunStreamChunkEvent(GraphNodeEventBase):
|
||||
"""Stream chunk event for workflow node execution."""
|
||||
|
||||
# Base fields
|
||||
# Spec-compliant fields
|
||||
selector: Sequence[str] = Field(
|
||||
..., description="selector identifying the output location (e.g., ['nodeA', 'text'])"
|
||||
)
|
||||
chunk: str = Field(..., description="the actual chunk content")
|
||||
is_final: bool = Field(default=False, description="indicates if this is the last chunk")
|
||||
chunk_type: ChunkType = Field(default=ChunkType.TEXT, description="type of the chunk")
|
||||
|
||||
# Tool call fields (when chunk_type == TOOL_CALL)
|
||||
tool_call: ToolCall | None = Field(
|
||||
default=None,
|
||||
description="structured payload for tool_call chunks",
|
||||
)
|
||||
|
||||
# Tool result fields (when chunk_type == TOOL_RESULT)
|
||||
tool_result: ToolResult | None = Field(
|
||||
default=None,
|
||||
description="structured payload for tool_result chunks",
|
||||
)
|
||||
|
||||
|
||||
class NodeRunRetrieverResourceEvent(GraphNodeEventBase):
|
||||
|
||||
@@ -13,21 +13,16 @@ from .loop import (
|
||||
LoopSucceededEvent,
|
||||
)
|
||||
from .node import (
|
||||
ChunkType,
|
||||
ModelInvokeCompletedEvent,
|
||||
PauseRequestedEvent,
|
||||
RunRetrieverResourceEvent,
|
||||
RunRetryEvent,
|
||||
StreamChunkEvent,
|
||||
StreamCompletedEvent,
|
||||
ThoughtChunkEvent,
|
||||
ToolCallChunkEvent,
|
||||
ToolResultChunkEvent,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"AgentLogEvent",
|
||||
"ChunkType",
|
||||
"IterationFailedEvent",
|
||||
"IterationNextEvent",
|
||||
"IterationStartedEvent",
|
||||
@@ -44,7 +39,4 @@ __all__ = [
|
||||
"RunRetryEvent",
|
||||
"StreamChunkEvent",
|
||||
"StreamCompletedEvent",
|
||||
"ThoughtChunkEvent",
|
||||
"ToolCallChunkEvent",
|
||||
"ToolResultChunkEvent",
|
||||
]
|
||||
|
||||
@@ -1,13 +1,11 @@
|
||||
from collections.abc import Sequence
|
||||
from datetime import datetime
|
||||
from enum import StrEnum
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from core.file import File
|
||||
from core.model_runtime.entities.llm_entities import LLMUsage
|
||||
from core.rag.entities.citation_metadata import RetrievalSourceMetadata
|
||||
from core.workflow.entities import ToolCall, ToolResult
|
||||
from core.workflow.entities.pause_reason import PauseReason
|
||||
from core.workflow.node_events import NodeRunResult
|
||||
|
||||
@@ -34,60 +32,13 @@ class RunRetryEvent(NodeEventBase):
|
||||
start_at: datetime = Field(..., description="Retry start time")
|
||||
|
||||
|
||||
class ChunkType(StrEnum):
|
||||
"""Stream chunk type for LLM-related events."""
|
||||
|
||||
TEXT = "text" # Normal text streaming
|
||||
TOOL_CALL = "tool_call" # Tool call arguments streaming
|
||||
TOOL_RESULT = "tool_result" # Tool execution result
|
||||
THOUGHT = "thought" # Agent thinking process (ReAct)
|
||||
THOUGHT_START = "thought_start" # Agent thought start
|
||||
THOUGHT_END = "thought_end" # Agent thought end
|
||||
|
||||
|
||||
class StreamChunkEvent(NodeEventBase):
|
||||
"""Base stream chunk event - normal text streaming output."""
|
||||
|
||||
# Spec-compliant fields
|
||||
selector: Sequence[str] = Field(
|
||||
..., description="selector identifying the output location (e.g., ['nodeA', 'text'])"
|
||||
)
|
||||
chunk: str = Field(..., description="the actual chunk content")
|
||||
is_final: bool = Field(default=False, description="indicates if this is the last chunk")
|
||||
chunk_type: ChunkType = Field(default=ChunkType.TEXT, description="type of the chunk")
|
||||
tool_call: ToolCall | None = Field(default=None, description="structured payload for tool_call chunks")
|
||||
tool_result: ToolResult | None = Field(default=None, description="structured payload for tool_result chunks")
|
||||
|
||||
|
||||
class ToolCallChunkEvent(StreamChunkEvent):
|
||||
"""Tool call streaming event - tool call arguments streaming output."""
|
||||
|
||||
chunk_type: ChunkType = Field(default=ChunkType.TOOL_CALL, frozen=True)
|
||||
tool_call: ToolCall | None = Field(default=None, description="structured tool call payload")
|
||||
|
||||
|
||||
class ToolResultChunkEvent(StreamChunkEvent):
|
||||
"""Tool result event - tool execution result."""
|
||||
|
||||
chunk_type: ChunkType = Field(default=ChunkType.TOOL_RESULT, frozen=True)
|
||||
tool_result: ToolResult | None = Field(default=None, description="structured tool result payload")
|
||||
|
||||
|
||||
class ThoughtStartChunkEvent(StreamChunkEvent):
|
||||
"""Agent thought start streaming event - Agent thinking process (ReAct)."""
|
||||
|
||||
chunk_type: ChunkType = Field(default=ChunkType.THOUGHT_START, frozen=True)
|
||||
|
||||
|
||||
class ThoughtEndChunkEvent(StreamChunkEvent):
|
||||
"""Agent thought end streaming event - Agent thinking process (ReAct)."""
|
||||
|
||||
chunk_type: ChunkType = Field(default=ChunkType.THOUGHT_END, frozen=True)
|
||||
|
||||
|
||||
class ThoughtChunkEvent(StreamChunkEvent):
|
||||
"""Agent thought streaming event - Agent thinking process (ReAct)."""
|
||||
|
||||
chunk_type: ChunkType = Field(default=ChunkType.THOUGHT, frozen=True)
|
||||
|
||||
|
||||
class StreamCompletedEvent(NodeEventBase):
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user